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In this 
presentation, we 

will discuss 
chapters 2-5.
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Chapter 2

• Continuous dynamics
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Six degrees of freedom (𝑥, 𝑦, 𝑧, 𝜃𝑥, 𝜃𝑦 , 𝜃𝑧)

vector  x vector θ

Newton’s second law:
𝐹 𝑡 = 𝑀 ሷ𝑥 𝑡

In fact

𝐹 𝑡 =
𝑑𝑃

𝑑𝑡
=

𝑑

𝑑𝑡
𝑀 𝑡 𝑣 𝑡 = 𝑀𝑎(𝑡)

We consider the mass is constant



5



6

remembrance
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Newton’s second law:

𝑇 𝑡 =
𝑑𝐿

𝑑𝑡
=

𝑑

𝑑𝑡
(𝐼 𝑡 ሶ𝜃 𝑡 )

moment of inertia tensor
It depends on the geometry and orientation of the object.
It represents the reluctance that an object has to spin around any axis 
as a function of its orientation along the three axes.

𝐼𝑦𝑥 𝑡 is the inertia that determines how acceleration around the x axis 

is related to torque around the y axis.
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If the object is spherical, for example, this reluctance is the same 
around all axes, so the moment of inertia reduces to a constant scalar 𝐼.

𝑇 𝑡 =
𝑑

𝑑𝑡
𝐼 𝑡 ሶ𝜃 𝑡 = 𝐼 ሷ𝜃(𝑡)
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𝑥 𝑡 = 𝑥 0 + 𝑡 ሶ𝑥 𝑡 +
1

𝑀
න

0

𝑡

න

0

𝜏

𝐹 𝛼 𝑑𝛼𝑑𝜏

𝜃 𝑡 = 𝜃 0 + 𝑡 ሶ𝜃 𝑡 +
1

𝐼
න

0

𝑡

න

0

𝜏

𝑇 𝛼 𝑑𝛼𝑑𝜏
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We are familiar with the concept of a system from the lesson “Signals 
and Systems”. Now, we can depict the actor model for the helicopter as 
follows:

It can be represented as a cascade composition of two actors as follows:

𝐼𝑦𝑦
ሶ𝜃𝑦(0)

parameters of the actor

1

𝐼𝑦𝑦
𝑇𝑦 ሶ𝜃𝑦(0) ሶ𝜃𝑦

𝑦2 𝑡 = 𝑖 + න

0

𝑡

𝑥2 𝜏 𝑑𝜏
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We can also argue about different properties of a system. For example 
causality, to have or not to have memory, linearity, time invariance and 
stability.
-----------------------------------------------------------------------------------------------
The helicopter system defined by this equation
ሶ𝜃𝑦 = ሶ𝜃𝑦 0 +

1

𝐼𝑦𝑦
0׬
𝑡
𝑇𝑦 𝜏 𝑑𝜏 is not time invariant.

However, this equation describes a time invariant system: 

ሶ𝜃𝑦 = 
1

𝐼𝑦𝑦
∞−׬
𝑡

𝑇𝑦 𝜏 𝑑𝜏

Since 
1

𝐼𝑦𝑦
∞−׬
𝑡

𝑇𝑦 𝜏 − 𝛼 𝑑𝜏 =
1

𝐼𝑦𝑦
∞−׬
𝑡−𝛼

𝑇𝑦 𝜏 𝑑𝜏 = ሶ𝜃𝑦 𝑡 − 𝛼

-----------------------------------------------------------------------------------------------
The helicopter it’s also unstable. Let the input be 𝑇𝑦 = u (unit step).

Then ሶ𝜃𝑦 grows without bound. In practice, a helicopter uses a feedback 

system to determine how much torque to apply at the tail rotor to 
keep the body of the helicopter straight.
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We can stabilize the helicopter with a simple feedback control system, 
as shown below.

𝜓 = 𝑑𝑖𝑠𝑖𝑟𝑒𝑑 𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦
e = difference between the actual and the 
desired angular velocity

ሶ𝜃𝑦 t = ሶ𝜃𝑦 0 +
1

𝐼𝑦𝑦
න

0

𝑡

𝑇𝑦 𝜏 𝑑𝜏

= ሶ𝜃𝑦 0 +
𝐾

𝐼𝑦𝑦
න

0

𝑡

𝜓 𝜏 − ሶ𝜃𝑦 𝜏 𝑑𝜏
An integral (or differential) equation
Assume 𝜓 𝑡 = 0

= ሶ𝜃𝑦 0 −
𝐾

𝐼𝑦𝑦
න

0

𝑡

ሶ𝜃𝑦 𝜏 𝑑𝜏

⇒ ሷ𝜃𝑦 𝑡 =
−𝐾

𝐼𝑦𝑦
ሶ𝜃𝑦 𝑡 ⟹ 𝑠 ሶΘ𝑦 𝑠 − ሶ𝜃𝑦 0 =

−𝐾

𝐼𝑦𝑦
ሶΘ𝑦 𝑠derivation

Laplace

Transform

⇒ ሶΘ𝑦 𝑠 =
ሶ𝜃𝑦 0

𝑠+
𝐾

𝐼𝑦𝑦

⇒ ሶ𝜃𝑦 𝑡 = ሶ𝜃𝑦 0 𝑒
−
𝐾𝑡
𝐼𝑦𝑦𝑢(𝑡)

Proportional controller

When K is bigger, ሶ𝜃𝑦 converges  faster to the desired output
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Assume that the helicopter is initially at rest, i.e ሶ𝜃 0 = 0
and the desired signal is 𝜓 𝑡 = 𝑎𝑢 𝑡
So we wish the helicopter to rotate at a fixed rate.

ሶ𝜃𝑦 t =
1

𝐼𝑦𝑦
න

0

𝑡

𝑇𝑦 𝜏 𝑑𝜏 =
𝐾

𝐼𝑦𝑦
න

0

𝑡

𝜓 𝜏 − ሶ𝜃𝑦 𝜏 𝑑𝜏 =
𝐾

𝐼𝑦𝑦
න

0

𝑡

𝑎𝑑𝜏 −
𝐾

𝐼𝑦𝑦
න

0

𝑡

ሶ𝜃𝑦 𝜏 𝑑𝜏

=
𝐾𝑎𝑡

𝐼𝑦𝑦
−

𝐾

𝐼𝑦𝑦
න

0

𝑡

ሶ𝜃𝑦 𝜏 𝑑𝜏 ⟹ ሶ𝜃𝑦 𝑡 = 𝑎𝑢(𝑡)(1 − 𝑒
−𝐾𝑡
𝐼𝑦𝑦 )

Using same

techniques

The above example is somewhat unrealistic because we cannot 
independently control the net torque of the helicopter. Actually
𝑇𝑦 𝑡 = 𝑇𝑡 𝑡 + 𝑇𝑟(𝑡)

Torque due to 
the top rotor

Torque due to 
the tail rotor

𝑇𝑡 will be determined by the rotation required to maintain or achieve a 
desired altitude. Thus, we will actually need to design a control system 

that controls 𝑇𝑟 and stabilizes the helicopter for any 𝑇𝑡.
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Suppose 𝑇𝑡 = 𝑏𝑢(𝑡) and the helicopter is initially at rest.
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we see that the portion of the model enclosed in the box is exactly the 
same as the control system analyzed in Slide 12. Thus, the same analysis 
still applies.

Suppose that desired angular rotation is 𝜓 𝑡 = 0

Then the input to the original control system = 𝜓 𝑡 +
T t

K
=

𝑏

𝐾
𝑢(𝑡)

⟹ 𝐵𝑎𝑠𝑒𝑑 𝑜𝑛 𝑆𝑙𝑖𝑑𝑒 14: ሶ𝜃𝑦 𝑡 =
𝑏

𝐾
𝑢(𝑡)(1 − 𝑒

−𝐾𝑡

𝐼𝑦𝑦)
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ሶ𝜃𝑦 𝑡 =
𝑏

𝐾
𝑢(𝑡)(1 − 𝑒

−𝐾𝑡
𝐼𝑦𝑦 )

The desired angular rotation is zero, but the control system 

asymptotically approaches a non-zero angular rotation of 
𝑏

𝐾
. This 

tracking error can be made arbitrarily small by increasing the control 
system feedback gain K, but with this controller design, it cannot be 
made to go to zero.
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PI controller

Now, consider how the output will change using a proportional 
integrator controller, which is depicted as follows:

Suppose 𝑇𝑡 = 𝑏𝑢 𝑡
𝜓 𝑡 = 0

ሶ𝜃𝑦 t =
1

𝐼𝑦𝑦
න

0

𝑡

𝑇𝑦 𝜏 𝑑𝜏 =
1

𝐼𝑦𝑦
න

0

𝑡

(𝑇𝑟 𝜏 + 𝑇𝑡 𝜏 )𝑑𝜏

=
1

𝐼𝑦𝑦
න

0

𝑡

(𝐾1 𝜓 𝜏 − ሶ𝜃𝑦 𝜏 + 𝐾2න

0

𝜏

𝜓 𝛼 − ሶ𝜃𝑦 𝛼 𝑑𝛼 + 𝑇𝑡 𝜏 )𝑑𝜏
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Using the assumption that 𝜓 𝑡 = 0, we have

ሶ𝜃𝑦 t =
1

𝐼𝑦𝑦
න

0

𝑡

(−𝐾1 ሶ𝜃𝑦 𝜏 − 𝐾2න

0

𝜏

ሶ𝜃𝑦 𝛼 𝑑𝛼 + 𝑇𝑡 𝜏 )𝑑𝜏

=
1

𝐼𝑦𝑦
න

0

𝑡

−𝐾1 ሶ𝜃𝑦 𝜏 − 𝐾2න

0

𝜏

ሶ𝜃𝑦 𝛼 𝑑𝛼 𝑑𝜏 +
1

𝐼𝑦𝑦
න

0

𝑡

𝑏𝑑𝜏

=
1

𝐼𝑦𝑦
න

0

𝑡

−𝐾1 ሶ𝜃𝑦 𝜏 − 𝐾2න

0

𝜏

ሶ𝜃𝑦 𝛼 𝑑𝛼 𝑑𝜏 +
𝑏𝑡

𝐼𝑦𝑦

⟹ ሷ𝜃𝑦 𝑡 =
1

𝐼𝑦𝑦
−𝐾1 ሶ𝜃𝑦 𝑡 − 𝐾2න

0

𝑡

ሶ𝜃𝑦 𝛼 𝑑𝛼 +
𝑏

𝐼𝑦𝑦

⟹
𝑑3𝜃

𝑑𝑡3
=

1

𝐼𝑦𝑦
−𝐾1 ሷ𝜃𝑦 𝑡 − 𝐾2 ሶ𝜃𝑦 t
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⟹ s2 ሶΘ 𝑠 − 𝑠 ሶ𝜃𝑦 0 − ሷ𝜃𝑦 0 =
1

𝐼𝑦𝑦
−𝐾1𝑠 ሶΘ 𝑠 + 𝐾1 ሶ𝜃𝑦 0 − 𝐾2 ሶΘ 𝑠

⟹ 𝐼𝑦𝑦s
2 + 𝐾1𝑠 + 𝐾2 ሶΘ 𝑠 = 𝐼𝑦𝑦 𝑠 ሶ𝜃𝑦 0 + ሷ𝜃𝑦 0 + 𝐾1 ሶ𝜃𝑦 0

ሶΘ 𝑠 =
𝐼𝑦𝑦 ሶ𝜃𝑦 0 𝑠 + 𝐼𝑦𝑦 ሷ𝜃𝑦 0 + 𝐾1 ሶ𝜃𝑦 0

𝐼𝑦𝑦s
2 + 𝐾1𝑠 + 𝐾2

=

ሶ𝜃𝑦 0 𝑠 + ሷ𝜃𝑦 0 +
𝐾1 ሶ𝜃𝑦 0
𝐼𝑦𝑦

s2 +
𝐾1
𝐼𝑦𝑦

𝑠 +
𝐾2
𝐼𝑦𝑦

Now, based on the roots of the denominator, there are different 
strategies for fraction decomposition. Since K1 and K2 are unknown, we 
must consider all the strategies.
1) Suppose the denominator has two distinct roots. Then we can write

ሶ𝜃𝑦 0 𝑠 + ሷ𝜃𝑦 0 +
𝐾1 ሶ𝜃𝑦 0
𝐼𝑦𝑦

s2 +
𝐾1
𝐼𝑦𝑦

𝑠 +
𝐾2
𝐼𝑦𝑦

=
𝐴

𝑠 − 𝑟1
+

𝐵

𝑠 − 𝑟2
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ሶΘ 𝑠 =

ሶ𝜃𝑦 0 𝑠 + ሷ𝜃𝑦 0 +
𝐾1 ሶ𝜃𝑦 0
𝐼𝑦𝑦

s2 +
𝐾1
𝐼𝑦𝑦

𝑠 +
𝐾2
𝐼𝑦𝑦

=
𝐴

𝑠 − 𝑟1
+

𝐵

𝑠 − 𝑟2

Where 𝑟1 =
−𝐾1+ 𝐾1

2−4𝐼𝑦𝑦𝐾2

2𝐼𝑦𝑦
and 𝑟2 =

−𝐾1− 𝐾1
2−4𝐼𝑦𝑦𝐾2

2𝐼𝑦𝑦

⟹

𝐴+𝐵 = ሶ𝜃𝑦 0

−𝐴𝑟2 − 𝐵𝑟1 = ሷ𝜃𝑦 0 +
𝐾1 ሶ𝜃𝑦 0

𝐼𝑦𝑦

⟹ −𝐴𝑟2 − ሶ𝜃𝑦 0 − 𝐴 𝑟1 = ሷ𝜃𝑦 0 +
𝐾1 ሶ𝜃𝑦 0

𝐼𝑦𝑦

⟹−𝐴 ×

−𝐾1 − 𝐾1
2 − 4𝐼𝑦𝑦𝐾2

2𝐼𝑦𝑦
− ሶ𝜃𝑦 0 − 𝐴

−𝐾1 + 𝐾1
2 − 4𝐼𝑦𝑦𝐾2

2𝐼𝑦𝑦
= ሷ𝜃𝑦 0 +

𝐾1 ሶ𝜃𝑦 0

𝐼𝑦𝑦

𝐾1
2 − 4𝐼𝑦𝑦𝐾2>0
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⟹ 𝐴𝐾1 + 𝐴 𝐾1
2 − 4𝐼𝑦𝑦𝐾2 + ሶ𝜃𝑦 0 𝐾1 − ሶ𝜃𝑦 0 𝐾1

2 − 4𝐼𝑦𝑦𝐾2 − 𝐴𝐾1

+ 𝐴 𝐾1
2 − 4𝐼𝑦𝑦𝐾2 = 2𝐼𝑦𝑦 ሷ𝜃𝑦 0 + 2𝐾1 ሶ𝜃𝑦 0

⟹ 2𝐴 𝐾1
2 − 4𝐼𝑦𝑦𝐾2 = ሶ𝜃𝑦 0 𝐾1 + 𝐾1

2 − 4𝐼𝑦𝑦𝐾2 + 2𝐼𝑦𝑦 ሷ𝜃𝑦 0

⟹ A =
ሶ𝜃𝑦 0

2
+
𝐾1 ሶ𝜃𝑦 0 + 2𝐼𝑦𝑦 ሷ𝜃𝑦 0

2 𝐾1
2 − 4𝐼𝑦𝑦𝐾2

⟹ B =
ሶ𝜃𝑦 0

2
−
𝐾1 ሶ𝜃𝑦 0 + 2𝐼𝑦𝑦 ሷ𝜃𝑦 0

2 𝐾1
2 − 4𝐼𝑦𝑦𝐾2



23

Now, we can analyze the system behavior over time using Laplace 
inverse transform:
ሶ𝜃𝑦 t = 𝐴𝑒𝑟1𝑡 + 𝐵𝑒𝑟2𝑡

=
1

2
ሶ𝜃𝑦 0 +

𝐾1 ሶ𝜃𝑦 0 + 2𝐼𝑦𝑦 ሷ𝜃𝑦 0

𝐾1
2 − 4𝐼𝑦𝑦𝐾2

𝑒

−𝐾1+ 𝐾1
2−4𝐼𝑦𝑦𝐾2

2𝐼𝑦𝑦
𝑡

+
1

2
ሶ𝜃𝑦 0 −

𝐾1 ሶ𝜃𝑦 0 + 2𝐼𝑦𝑦 ሷ𝜃𝑦 0

𝐾1
2 − 4𝐼𝑦𝑦𝐾2

𝑒

−𝐾1− 𝐾1
2−4𝐼𝑦𝑦𝐾2

2𝐼𝑦𝑦
𝑡
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2) Suppose the denominator has two imaginary roots. Then we can 
write:

ሶΘ 𝑠 =

ሶ𝜃𝑦 0 𝑠 + ሷ𝜃𝑦 0 +
𝐾1 ሶ𝜃𝑦 0
𝐼𝑦𝑦

s2 +
𝐾1
𝐼𝑦𝑦

𝑠 +
𝐾2
𝐼𝑦𝑦

=

ሶ𝜃𝑦 0 𝑠 +
𝐾1
2𝐼𝑦𝑦

+ ሷ𝜃𝑦 0 +
𝐾1 ሶ𝜃𝑦 0
2𝐼𝑦𝑦

𝑠 +
𝐾1
2𝐼𝑦𝑦

2

+
4𝐼𝑦𝑦𝐾2 − 𝐾1

2

4𝐼𝑦𝑦
2

ሶ𝜃𝑦 t = 𝑒
−𝐾1𝑡

2𝐼𝑦𝑦 ሶ𝜃𝑦 0 cos
4𝐼𝑦𝑦𝐾2−𝐾1

2

2𝐼𝑦𝑦
𝑡 +

ሷ𝜃𝑦 0 +
𝐾1 ሶ𝜃𝑦 0

2𝐼𝑦𝑦

4𝐼𝑦𝑦𝐾2−𝐾1
2

2𝐼𝑦𝑦

sin
4𝐼𝑦𝑦𝐾2−𝐾1

2

2𝐼𝑦𝑦
𝑡 .

ሶ𝜃𝑦 t = 𝑒
−𝐾1𝑡

2𝐼𝑦𝑦 ሶ𝜃𝑦 0 cos
4𝐼𝑦𝑦𝐾2−𝐾1

2

2𝐼𝑦𝑦
𝑡 +

𝐾1 ሶ𝜃𝑦 0 +2𝐼𝑦𝑦 ሷ𝜃𝑦 0

𝐾1
2−4𝐼𝑦𝑦𝐾2

sin
4𝐼𝑦𝑦𝐾2−𝐾1

2

2𝐼𝑦𝑦
𝑡 .

note that our assumption about the imaginary roots is correct only if 𝐾1
2

− 4𝐼𝑦𝑦𝐾2 < 0. 
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3) Suppose the denominator has a  double root. Notice that in such a 

situation the equation 𝐾1
2 = 4𝐼𝑦𝑦𝐾2 holds. so we can write

ሶΘ 𝑠 =

ሶ𝜃𝑦 0 𝑠 + ሷ𝜃𝑦 0 +
𝐾1 ሶ𝜃𝑦 0
𝐼𝑦𝑦

s2 +
𝐾1
𝐼𝑦𝑦

𝑠 +
𝐾2
𝐼𝑦𝑦

=
𝐴

𝑠 +
𝐾1
2𝐼𝑦𝑦

+
𝐵

𝑠 +
𝐾1
2𝐼𝑦𝑦

2

⟹ 𝐴 𝑠 +
𝐾1
2𝐼𝑦𝑦

+ 𝐵 = ሶ𝜃𝑦 0 𝑠 + ሷ𝜃𝑦 0 +
𝐾1 ሶ𝜃𝑦 0

𝐼𝑦𝑦

⟹

𝐴 = ሶ𝜃𝑦 0

𝐵 =
𝐾1 ሶ𝜃𝑦 0 + 2𝐼𝑦𝑦 ሷ𝜃𝑦 0

2𝐼𝑦𝑦

⟹ ሶ𝜃𝑦 t = 𝑒

−𝐾1𝑡

2𝐼𝑦𝑦 ሶ𝜃𝑦 0 +
𝐾1 ሶ𝜃𝑦 0 + 2𝐼𝑦𝑦 ሷ𝜃𝑦 0

2𝐼𝑦𝑦
t
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𝐾1
2 − 4𝐼𝑦𝑦𝐾2>0

⟹ ሶ𝜃𝑦 t =
1

2
ሶ𝜃𝑦 0 +

𝐾1 ሶ𝜃𝑦 0 + 2𝐼𝑦𝑦 ሷ𝜃𝑦 0

𝐾1
2 − 4𝐼𝑦𝑦𝐾2

𝑒

−𝐾1+ 𝐾1
2−4𝐼𝑦𝑦𝐾2

2𝐼𝑦𝑦
𝑡

+
1

2
ሶ𝜃𝑦 0 −

𝐾1 ሶ𝜃𝑦 0 + 2𝐼𝑦𝑦 ሷ𝜃𝑦 0

𝐾1
2 − 4𝐼𝑦𝑦𝐾2

𝑒

−𝐾1− 𝐾1
2−4𝐼𝑦𝑦𝐾2

2𝐼𝑦𝑦
𝑡

∗∗∗
𝐾1
2 − 4𝐼𝑦𝑦𝐾2 < 0⟹

ሶ𝜃𝑦 t = 𝑒
−𝐾1𝑡
2𝐼𝑦𝑦 ሶ𝜃𝑦 0 cos

4𝐼𝑦𝑦𝐾2 − 𝐾1
2

2𝐼𝑦𝑦
𝑡 +

𝐾1 ሶ𝜃𝑦 0 + 2𝐼𝑦𝑦 ሷ𝜃𝑦 0

𝐾1
2 − 4𝐼𝑦𝑦𝐾2

sin
4𝐼𝑦𝑦𝐾2 − 𝐾1

2

2𝐼𝑦𝑦
𝑡

∗∗∗
𝐾1
2 = 4𝐼𝑦𝑦𝐾2

⟹ ሶ𝜃𝑦 t = 𝑒
−𝐾1𝑡
2𝐼𝑦𝑦 ሶ𝜃𝑦 0 +

𝐾1 ሶ𝜃𝑦 0 + 2𝐼𝑦𝑦 ሷ𝜃𝑦 0

2𝐼𝑦𝑦
t

As an outline, we rewrite what we have calculated:

underdamped

critically 
damped

overdamped
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A DC motor produces a torque that is proportional to the current 
through the windings of the motor. Neglecting friction, the net torque 
on the motor, therefore, is this torque minus the torque applied by 
whatever load is connected to the motor. Newton’s second law (the 
rotational version) gives

𝑘𝑇 𝑖 𝑡 − 𝑥 𝑡 = 𝐼
𝑑𝜔

𝑑𝑡

Assuming the motor is initially at
rest, we can rewrite the equation:

𝜔 𝑡 =
𝑘𝑇
𝐼
න

0

𝑡

𝑖 𝜏 𝑑𝜏 −
1

𝐼
න

0

𝑡

𝑥 𝜏 𝑑𝜏

motor torque constant

torque applied by the load

kT
I

x

i
𝜔
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In reality, the input to a DC motor is not a current, but is rather a 
voltage. If we assume that the inductance of the motor windings is 
negligible, then the relationship between voltage and current is given by

𝑣 𝑡 = 𝑅𝑖 𝑡 + 𝑘𝑏𝜔 t

where R is the resistance of the motor windings and kb is a constant 
called the motor back electromagnetic force constant. The second term 
appears because a rotating motor also functions as an electrical 
generator, where the voltage generated is proportional to the angular 
velocity.
So we can modify the previous equation:

𝑘𝑇
𝑅

(𝑣 𝑡 − 𝑘𝑏𝜔 t ) − 𝑥 𝑡 = 𝐼
𝑑𝜔

𝑑𝑡

⟹ ሶ𝜔 +
𝑘𝑏𝑘𝑇
𝑅𝐼

𝜔 +
𝑅𝑥 𝑡 − 𝑘𝑇𝑣 𝑡

𝑅𝐼
= 0
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Chapter 3

• Discrete dynamics
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A discrete system operates in a sequence of discrete steps and is said to 
have discrete dynamics. Some systems are inherently discrete.

Example) A system counting the number of cars entering and leaving a 
parking garage, in order to display the number of  cars occupying the 
garage. 

The corresponding 
system that we had 
in previous chapter
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How to model the discrete systems?

Finite state machine 
(automata)

However, it is 
just for 

showing the 
states and 

there may not 
be a final 

state.

A pure signal is either present or absent
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Boolean predicate
For example:

: Transition is always enabled.
: Transition is enabled if p1 is present.

: Transition is enabled if p1 is absent.
: Transition is enabled if both p1 and p2 are present.
: Transition is enabled if either p1 or p2 is present.

: Transition is enabled if p1 is present and p2 is absent.

Suppose the setpoint is 20 degrees Celsius. If the 
heater is on, then the thermostat allows the 
temperature to rise past the setpoint to 22 
degrees. If the heater is off, then it allows the 
temperature to drop past the setpoint to 18

degrees. This strategy is called hysteresis.
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Hysteresis avoids chattering, where the heater would turn on and off 
rapidly when the temperature is close to the setpoint temperature.

FSM

Event triggered like garage counter, HVAC (heating, 

ventilation, and air conditioning)

Time triggered timed automata like traffic light

Extended State machine
The notation for FSMs becomes awkward when the number of states 
gets large. The garage counter example illustrates this point clearly.
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When pedestrian is present, the machine transitions to yellow if it has been 
in state green for at least 60 seconds. Otherwise, it transitions to pending, 
where it stays for the remainder of the 60 second interval. This ensures that 
once the light goes green, it stays green for at least 60 seconds.

:= means 
assignment. In 
order not to 
be confused 
with a 
predicate.
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Another example from out of the book

turnstile
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Chapter 4

• Hybrid systems
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We have learned so far

𝐹 = −𝑘𝑥 = 𝑚
𝑑2𝑥

𝑑𝑡2

Continuous systems Discrete systems

Now we want to 
combine these systems.

Why?
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In this section, we show that state 
machines can be generalized to admit 
continuous inputs and outputs and to 
combine discrete and continuous 
dynamics.
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State Refinement
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Recall the thermostat of Example 4.1, which uses hysteresis to prevent 
chattering. An alternative implementation that would also prevent 
chattering would use a single temperature threshold, but instead would 
require that the heater remain on or off for at least a minimum amount 
of time, regardless of the temperature. This design would not have the 
hysteresis property, but may be useful nonetheless.

This action ensures that 
when the thermostat 

starts, it can immediately 
transition to the heating 
mode if the temperature  
𝜏(t) is less than or equal 

to 20 degrees.

s is a continuous-time 
signal with dynamics 

given by ሶ𝑠 (t) = 1 
representing the clock

ensures that the heater 
will always be on for at 

least time Th.

specifies that once the 
heater goes off, it will 
remain off for at least 
time Tc.
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A timed automaton that 
generates a pure output 
event every T time units.
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Consider the physical system depicted below. Two sticky round masses 
are attached to springs. The springs are compressed or extended and 
then released. The masses oscillate on a frictionless table. If they 
collide, they stick together and oscillate together. After some time, the 
stickiness decays, and masses pull apart again. 

p1 , p2 : neutral position of two masses 
respectively (when the springs are 
neither extended nor compressed)

m1 m2

k1 k2

1) If the masses are separate:

𝐹 = 𝑘 𝑝 − 𝑦 = 𝑚
𝑑2𝑦

𝑑𝑡2

⇒ ሷ𝑦𝑖(𝑡) =
𝑘𝑖(𝑝𝑖 − 𝑦𝑖 𝑡 )

𝑚𝑖

2) With the masses stuck together, they behave as a single object with mass m1 +m2.

𝑦(𝑡) = 𝑦1(𝑡) = 𝑦2(𝑡)

𝐹 = 𝑘1 𝑝1 − 𝑦 + 𝑘2 𝑝2 − 𝑦 = 𝑚
𝑑2𝑦

𝑑𝑡2

⇒ ሷ𝑦(𝑡) =
𝑘1𝑝1 + 𝑘2𝑝2 − (𝑘1 + 𝑘2)𝑦 𝑡

𝑚1 +𝑚2
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Now, we must determine when the system changes it’s state. Then 
we should find the velocity in each action, since in order to describe 
the motion of system in each state, we need the position and velocity 
at the time that the state changes.
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The transition from apart to together has the guard 𝑦1(𝑡) = 𝑦2(𝑡)

When the masses stick together, based on the conservation of momentum 
we have:

𝑚1 ሶ𝑦1 𝑡 + 𝑚2 ሶ𝑦2 𝑡 = (𝑚1 +𝑚2) ሶ𝑦(𝑡)

⟹ ሶ𝑦 𝑡 =
𝑚1 ሶ𝑦1 𝑡 + 𝑚2 ሶ𝑦2 𝑡

𝑚1 +𝑚2

The transition from together to apart has the more complicated guard:
𝑘1 − 𝑘2 𝑦 𝑡 + 𝑘2𝑝2 − 𝑘1𝑝1 > s

That is, the right-pulling force on the right mass exceeds the
right-pulling force on the left mass by more than the stickiness.

stickiness  of 
two  masses
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After determining all of the system features, we 
can predict the system behavior by programming 
or using a simulator. 47



48

The system outputs a 
bump each time the 
ball hits the ground, 
and also outputs the 
position of the ball.

This system is depicted as an event triggered system (y(t)=0). As an 
exercise, think about converting it to a time triggered one. What makes 
it problematic?
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Control system

The plant, the physical  process  that  is  to  be  controlled

the environment in  which  the  plant  operates

the sensors that  measure  some  variables  of  the 

plant  and  the  environment

the controller that 

determines  the  mode  transition 
structure  and  selects  the  time-
based  inputs  to  the  plant. 1. supervisory control that 

determines the mode transition
structure

It has two levels:

2. low-level control that 
determines the time-based inputs to 
the plant

Hybrid systems are ideal 
for modeling such two-

level controllers.
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Consider an 
automated guided 
vehicle (AGV). We 
will design a 
controller so that the 
vehicle closely 
follows the track.

We ignore the inertia of the vehicle, so we assume that we 
can instantaneously change the velocity or angular speed.

ሶ𝑥 𝑡 = 𝑢 𝑡 cos 𝜃(𝑡)
ሶ𝑦 𝑡 = 𝑢 𝑡 sin 𝜃(𝑡)

ሶ𝜃 𝑡 = 𝜔(𝑡)



Now, we’ve designed 
a low level control, 

specifying what to do in 
each decision.
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Transitions are 
added as 

supervisory control
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In this example:

1) The plant is described by differential equations ൞

ሶ𝑥 𝑡 = 𝑢 𝑡 cos 𝜃(𝑡)

ሶ𝑦 𝑡 = 𝑢 𝑡 sin 𝜃(𝑡)
ሶ𝜃 𝑡 = 𝜔(𝑡)

that govern 

the evolution of the continuous state at time 𝑡, (𝑥(𝑡); 𝑦(𝑡); 𝜃(𝑡)), in terms of the 
plant inputs 𝑢 and 𝜔.

2) The environment is the closed track.
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3) The sensor is the photodiode array, measuring the position of the 
AGV relative to the track (e(t)).

4)
i) The supervisory controller comprises the four modes and the 
guards that determine when to switch between modes.

ii) The low-level controller specifies how the time-based inputs 
to the plant, u and 𝜔, are selected in each mode.
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Chapter 5

• Composition of State Machines
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State machines provide a convenient way to model behaviors of 
systems. 

Automated tools can handle large state spaces, but humans have more 
difficulty with any direct representation of a large state space. A time-
honored principle in engineering is that 

This chapter gives a 
number of ways to do this with state machines.

Composition 
techniques

൞
concurrent composition ቊ

machines react simultaneously (synchronous)
machines react independently (asynchronous)

hierarchy
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Synchrony has different meanings in different contexts. The meaning 
used in this chapter underlies the .
❑ the outputs of components in a program are (conceptually) 

simultaneous with their inputs ( ).
❑ components in a program execute (conceptually) simultaneously and 

instantaneously.
concurrent composition

1) Side-by-Side Synchronous Composition:
The state machines being composed do not communicate.
The inputs and outputs of the two actors are disjoint.
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Synchronous side-by-side composition is simple for several reasons. 
❑ we know that the environment determines when a state machine 

reacts. In synchronous side-by-side composition, the environment 
need not be aware that is a composition of two state machines. 
Such compositions are modular in the sense that the composition 
itself becomes a component that can be further composed as if it 
were itself an atomic component.

❑ if the two state machines A and B are deterministic, then the 
synchronous side-by-side composition is also deterministic. We say 
that a property is compositional if a property held by the 
components is also a property of the composition. For synchronous 
side-by-side composition, is a compositional property.

❑ a synchronous side-by-side composition of finite state machines is 
itself an FSM.
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Notice that (s1; s4) 
and (s2; s3) are not 

.
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2)  Side-by-Side Asynchronous Composition:
In an of state machines, the component 
machines react independently. This statement is rather vague, and in 
fact, it has several different interpretations. Each interpretation gives a 
semantics to the composition. The key to each semantics is how to 
define a reaction of the composition . Two possibilities are:

Semantics 1) A reaction of is a reaction of one of 𝐴 or 𝐵, where the 
choice is nondeterministic. (interleaving semantics, i.e. 𝐴 or 𝐵 never 
react simultaneously. Their reactions are interleaved in some order.)

Semantics 2) A reaction of is a reaction of 𝐴, 𝐵, or both 𝐴 and 𝐵, 
where the choice is nondeterministic. A variant of this possibility might 
allow neither to react.
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under these semantics machines A and B may completely miss input 
events. That is, an input to destined for machine A may be present in a 
reaction where the nondeterministic choice results in B reacting rather 
than A. If this is not desirable, then some control over scheduling or 
synchronous composition becomes a better choice.

𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐𝑠 1

This machine is nondeterministic. Note 
that if we had chosen semantics 2, then it 

would also be able to move to (s2; s4).
red arrows show 
nondeterminism
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Shared Variables
An extended state machine has local variables that can be read and written as 
part of taking a transition. Sometimes it is useful when composing state 
machines to allow these variables to be shared among a group of machines. In 
particular, such shared variables can be useful for modeling interrupts and 
threads. Many complications arise, including the model 
and the notion of .
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Consider two servers that can receive requests from a network. Each request requires 
an unknown amount of time to service, so the servers share a queue of requests. If 
one server is busy, the other server can respond to a request, even if the request 
arrives at the network interface of the first server.

shared variable pending:
number of pending job requests

When a request arrives at 
the composite machine 

, one of the two servers 
is nondeterministically
chosen to react, 
assuming asynchronous 
composition under 
semantics 1. If that server 
is idle, then it proceeds 
to serve the request. If 
the server is serving 
another request, then 
one of two things can 
happen:
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it can coincidentally finish serving the request it is currently serving, issuing the output done, 
and proceed to serve the new one, or it can increment the count of pending requests and 
continue to serve the current request. The choice between these is nondeterministic, to model 
the fact that the time it takes to service a request is unknown.

If reacts when there is 
no request, then again 
either server A or B will be 
selected non-
deterministically to react. 
If the server that reacts is 
idle and there are one or 
more pending requests, 
then the server transitions 
to serving and decrements 
the variable pending. If 
the server that reacts is 
not idle, then one of three 
things can happen.
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It may continue serving the current request, in which case it simply transitions on the 
self transition back to serving. Or it may finish serving the request, in which case it will 
transition to idle if there are no pending requests, or transition back to serving and 
decrement pending if there are pending requests.

Notice that because of 
the interleaving 
semantics, accesses to 
the shared variable are 
atomic operations
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The choice of semantics 1 is reasonable in this case because the input 
goes to both of the component machines, so regardless of which 
component machine reacts, no input event will be missed. However, this 
semantics would not work if the two machines had independent inputs, 
because then requests could be missed. Semantics 2 can help prevent 
that, but what strategy should be used by the environment to determine 
which machine reacts? What if the two independent inputs both have 
requests present at the same reaction of ? If we choose semantics 4 to 
allow both machines to react simultaneously, then what is the meaning 
when both machines update the shared variable? The updates are no 
longer atomic, as they are with an interleaving semantics. Note further 
that choosing asynchronous composition under semantics 1 allows 
behaviors that do not make good use of idle machines. In particular, 
suppose that machine A is serving, machine B is idle, and a request 
arrives. If the nondeterministic choice results in machine A reacting, 
then it will simply increment pending. Not until the nondeterministic 
choice results in B reacting will the idle machine be put to use. In fact, 

semantics 1 allows behaviors that never use one of the machines.
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Cascade Composition (serial composition)
The output of A must be valid is an input for B.

For cascade composition, if we wish the composition to be 
asynchronous, then we need to introduce some machinery for buffering 
the data that is sent from A to B. We defer discussion of such 
asynchronous composition to Chapter 6, where dataflow and process 
network models of computation will provide such asynchronous 
composition. In this chapter, we will only consider synchronous 
composition for cascade systems.
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(s1,s4) and 
(s2, s3) are 
not 
reachable 
states!
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We want to 
compose 
these models

The output 
𝑠𝑖𝑔𝑅 of the 
traffic light can 
provide the 
input 𝑠𝑖𝑔𝑅 of 
the pedestrian 
light.
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Note that unsafe states, such as (green, green), are not reachable states, and hence 
are not shown.
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General Composition
Side-by-side and cascade composition provide the basic building blocks 
for building more complex compositions of machines.

Hierarchical State Machines

which machine should react first, 𝐵 or 𝐴2? 
This conundrum will be resolved in the next 
chapter when we explain the synchronous-
reactive model of computation.

≡

State refinements can be another FSM
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≡

Consider the hierarchical FSM depicted below is in state 𝐶. A subtle 
question is what happens if both guards 𝑔1 and 𝑔4 evaluate to true. 
Such subtle questions help account for the proliferation of different 
variants of Statecharts.
We choose a particular semantics that has attractive modularity 
properties. In this semantics, a reaction of a hierarchical FSM is defined 
in a depth-first fashion. The deepest refinement of the current state 
reacts first, then its container state machine, then its container, etc.
this means that if the machine is in state B, then the refinement 
machine reacts first. 
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The transition from A to B is called a 
reset transition because the destination 
refinement is reset to its initial state, 
regardless of where it had previously 
been. A reset transition is indicated in 
our notation with a hollow arrowhead 
at the destination end of a transition.

the transition from A to B is a history 
transition, an alternative to a reset 
transition. In our notation, a solid 
arrowhead denotes a history transition. 
It may also be marked with an “H” for 
emphasis. When a history transition is 
taken, the destination refinement 
resumes in whatever state it was last in  
(or its initial state on the first entry).



76


