In the Name of GOD

nY .

modelingﬁ

- > | IS o 4 4
- . e = . =
i '°' M Y ’
~ Rl® ‘ 4 =5
—'" = "" N Y ‘7 J |
:,.-'71'. 111
. Ran v

Part I: Modeling

....................

.......................

Compasition of
State Machines

. Concurrent Models
of Computation

Part II: Design

Part Ill: Analysis

L. Introduction

Actuators

4. Embedded
Processors

10. Input and Qutput

13, Invariants and E
Tempaoral Logic '

14. Equivalence and ,
Refinement :

11, Multicasking

15. Reachability Analysis :
and Model Checking !

| 12, Scheduling 16, Quantitative Analysis '

~N

Modeling

Design]

"

‘ rAnaI'fslsJ

In this

presentation, we

will discuss
chapters 2-5.

Chapter 2

* Continuous dynamics

Six degrees of freedom (x, vy, z, 0,, Hy, 6,)

— =

vector x vector 6

Newton’s second law:

F(t) = Mx(t)
In fact
dP d
F(t) = == E(M(t)v(t)) = Ma(t)

4

@ We consider the mass is constant

VE>0, %x(t) = %(0)+ / %(7)dr
0

where 3(0) 1s the imitial velocity in three directions. Using (2.1), this becomes

Wi 0, %(t)=x(0) + %] F(7)dr,
D

Position 1s the integral of velocity,

x(t)

x(0) + / x(7)dT
0

) r T
x(0) +tx(0) + — F (o)dadr,
L]

Position

Velocity

Acceleration

Mass
Force
Momentum

Work

Kinetic Energy

Linear Motion Rotational Motion
X & Angular position
_dx dé ;
v= = == Angular velocity
dv do)
e = —_— A l r
= a = ngular acceleration
m I Moment of inertia
F=ma T=la Torque
p=my L=]o Angular Momentum
W = Fdx W =T1dé Work
| g S
K=—mv K= = lo* Kinetic Energy

Power

remembrance

Newton’s second law:

dL d .
It) =— =)

dt
L« X% I:-cg 3 W
Ly | = ux lyy lyz Wy,
L. fad]:y T Wz

moment of inertia tensor W’

It depends on the geometry and orientation of the object.
It represents the reluctance that an object has to spin around any axis
as a function of its orientation along the three axes.

[y (t) is the inertia that determines how acceleration around the x axis
is related to torque around the y axis.

If the object is spherical, for example, this reluctance is the same
around all axes, so the moment of inertia reduces to a constant scalar I.

T(t) = (z(t)e(t)) = 14(t)

Rotational velocity is the integral of acceleration,

i
A(t) =:§J{ﬂ}+fr?'mdr
0

where #(0) is the initial rotational velocity in three axes. For a spherical object, using
(2.3). this becomes

. : 1
A(t) = #(0) + 7 f T(7)dr
Orientation is the integral of rotational velocity,

[
a(t) = H[EJ}+[A(T)dr
J1

@ — A(0) + th('IJJ-+%
i

T(ox)deedr

DC-...______“

A helicopter has two rotors, one above, which provides lift, and
one on the tail. Without the rotor on the tail, the body of the helicopter would spin.
The rotor on the tail counteracts that spin. Specifically, the force produced by the

tail rotor must counter the torque produced by the main rotor. Here we consider
that the helicopter position 1s fixed at the origin, so there 1s no need to consider

equations describing position. Moreover, we assume that the helicopter remains
vertical, so pitch and roll are fixed at zero. These assumptions are not as unrealis-

tic as they may seem since we can define the coordinate system to be fixed to the
helicopter.

@ ;

We model the simplified helicopter by a system that takes as input a continuous-

time signal 7;,, the torque around the y axis (which causes changes in yaw). This
torque 18 the sum of the torque caused by the main rotor and that caused by the

tail rotor. When these are perfectly balanced, that sum 1s zero. The output of

our system will be the angular velocity #,, around the y axis. The dimensionally-
reduced version of (2.2) can be written as

Oy (t) = Ty (t)/Iyy-

Integrating both sides, we get the output # as a function of the input 77,

L

: : 1
0,(6) = 0,00+ 1 [Ty(ryar. 24
e vy - .
{ main rotor shaft
[<\O il
body M

@ Figure 2.2: Simplified model of a helicopter.

We are familiar with the concept of a system from the lesson “Signals

and Systems”. Now, we can depict the actor model for the helicopter as
follows:

Helicopter
1 L, Oy
6,0 T

parameters of the actor

It can be represented as a cascade composition of two actors as follows:
Helicopter

Integrator ;

[o

~
|
L
—
=
N
—
~
—
QU
S

6,(0) Oy .

We can also argue about different properties of a system. For example

causality, to have or not to have memory, linearity, time invariance and
stability.

The helicopter system defined by this equation
éy = éy(O) + ifot T, (t)dt| is not time invariant.

However, this equation describes a time invariant system:
: 1 ot
6, =—]__T,(t)dr

Iyy

: 1 ot _ 1 t-a A e
Since ;f_oo T,(t — a)dt = ™ I_ Ty(mdr = 0,(t —)
The helicopter it’s also unstable. Let the input be T,, = u (unit step).

Then éy grows without bound. In practice, a helicopter uses a feedback

system to determine how much torque to apply at the tail rotor to
keep the body of the helicopter straight.

We can stabilize the helicopter with a simple feedback control system,
as shown below.

Controller Helicopter
| {."."' 8-.

6,(0) Y = disired angular velocity

e = difference between the actual and the
desired angular velocity

Proportlonal controller
9 t) =6 ,(0) + _j T, (t)dr When K is bigger, éy converges faster to the desired output

An integral (or differential) equation
= 6,(0) + _j ('wb(T) — 0 (T)) Assume Y(t) = 0

IJ’ y

t

. K .
=6,(0) — I—J 6, (t)dr

vy
Laplace .
derivation |= 6,(t) = 9 y (1) = $0,(s) — 6,(0) = I_Gy(s)
lyy Transform yy

: 6.,(0)
g -o0-ir R

Iyy

Assume that the helicopter is initially at rest, i.e 6(0) =0
and the desired signal is Y(t) = au(t)
So we wish the helicopter to rotate at a fixed rate.

t t t t
K K .
6, (1) = j T,(Ddr = — | (W) - 6,())dr = — | adt —— | 6,(D)dr
lyy Iyy Iyy lyy .
Kat K ; . Using same | ;_Kt
=0 jey(r)dr = 0, (t) = au(t)(1 —e»)
yy- Yy techniques

The above example is somewhat unrealistic because we cannot
independently control the net torque of the helicopter. Actually
T,@) =00 + (1,0

the top rotor the tail rotor

Torque due to { Torque due to

T will be determined by the rotation required to maintain or achieve a
desired altitude. Thus, we will actually need to design a control system
({5‘% that controls T,. and stabilizes the helicopter for any T;.

Suppose T, = bu(t) and the helicopter is initially at rest.

Helicopter2
Controller2 _ Scale2 Integrator2 8
1"I“' Tr I}*- /.) -}!
Ti
(a)
Controller4 Scale3 Integrator3 9
y y

Controller5s

Original Control System

Controller Scale Integrator

Controller3

15

we see that the portion of the model enclosed in the box is exactly the
same as the control system analyzed in Slide 12. Thus, the same analysis
still applies.

Controller Helicopter

V] e f § ' - 0,
B.(0) [

Original Control System

Controller Scale Integrator

e I e I e

Controller3

Suppose that desired angular rotatio:Jis Y(t) =0

Then the input to the original control system = ¥ (t) + % = %u(t)
—-Kt

= Based on Slide 14: éy(t) — %u(t)(l —elvy)

16

. b —Kt
0,(t) = Eu(t)(l —ely)

The desired angular rotation is zero, but the control system
: . b ., .
asymptotically approaches a non-zero angular rotation of e This

tracking error can be made arbitrarily small by increasing the control
system feedback gain K, but with this controller design, it cannot be

made to go to zero.

Helicopter2

Integrator? :
& 0,

W
. Pl controller

Now, consider how the output will change using a proportional
integrator controller, which is depicted as follows:

Controller

Suppose T, = bu(t)

P(t) =0

: 1 g 1 t
0, () = —J T,(t)dt = — | (T;-(z) + T¢(7))dr

I I
yy Yy o

(¥(@ - 6,(@) da + T,(1))dz

o

0
t
= Iij(Kl (l/J(T) - Hy(T)) + KZ
0

®

18

Using the assumption that ¥ (t) = 0, we have

t T

: 1 : :
0, (t) = J (—K10,(7) — K, j 0, (a)da + T (7))dr
Y0 0

t T t
1 : 1
I—j —K19 (1) — Kzfey(a)da dt +I_ bdrt
vy 4 vy

t
S|
I I
vy 4 yy

t

1 b
= 6 y(t) = I_ —K19 (t) — KZJH (a)da |+ —

Iy y

I
(—IQH (1) — Kzféy(a)da dt +E

0

dt3 ,yy K18, () — K0, (1))

~

— 520(s) — 50, (0) — 6, (0) = — (—K156(s) + K16, (0) — K0(5))

Iy y

= (Lyys? + K15 + K;)0(5) = I, (56,(0) + §,(0)) + K,6,,(0)

. . K.6,(0)
. : 6,(0) s + 6,(0) + —~
b(s) I,,0,(0) s +1,,,6,(0) + K,6,,(0) _ y I,
Iyys? + Kis + K, 24K K
Iyy Iyy

Now, based on the roots of the denominator, there are different
strategies for fraction decomposition. Since K, and K, are unknown, we
must consider all the strategies.

1) Suppose the denominator has two distinct roots. Then we can write

Kléy(o)
L, _ A B
Ky S—1, S—T1

IJ’ y

0,(0) s +6,(0) +

Ky

Iy y

s2 + =5+ 1=

Qy(O) s + éy(O) + K16, (0)

. Iyy A B
O(s) = - e — +
SZ+I—1$+I—2 STh SR
yy yy
_K1+\/Kf—4lyyl(2 _Kl_\/K12—4Iny2
Where r; = and 7 =
21y, 2lyy
LK12 — 4y K>>0
—Ar, — Bry = 9}}(0) + 1 y()
L Iyy
. .. 6
N —Ar, — (Hy(o) _ A)Tl — Hy(O) + K1Iyyy(0)
—K; — \/Kf — 4L, K, —Ky + \/Kf — 4Ky K16, (0)
A x — — (6,(0) — 4) > = 6,(0) + Iy

Y yy yy

~

= % + A\/Kz 41,,K; + 0,(0)K; — Qy(O)\/Klz — 41K, — ,?/1

yKa = 21,,,0,(0) + 2K, 6,,(0)

= 24 JKf — 41, K, = 6,(0) (Kl + \/Kf - 41ny2> + 21,,,0,,(0)

0,(0) K16,(0) + 21,,6,(0)
2

= A=

2 JKf — 41, K,

0,(0) - K,0,(0) + 21,,6,,(0)
2

= B =
2\/1(12 —41,,K,

Now, we can analyze the system behavior over time using Laplace
inverse transform:

0,(t) = Ae™! + Be?t

: . —K;+ \/K12—4Iny2
: K,6,(0) + 21,,.6,(0
— 1 Qy(()) + 1 y()+ Yy y() e 21,y

2 :
K? — 4L,,K,

t

K16,(0) + 21,,,6,,(0)

J K{ —41,,K,

1/,
+5(6,(0) -

2) Suppose the denominator has two imaginary roots. Then we can
write:

.) K,6,(0) . K . K,0,(0)
| Hy(O)s _|_9y(0) +11+y() Hy(O) (s+21_1) + <9y(0) +121#
@(S) = = >

Sz+IKS+IKz LK 2+41yy1(2—1(1
yy vy 21 41yy2

K16
: LS LIy i 41y Ky —K1? b (0)+— y(© 41,y Ky —K4>
21 Yy 2lyy . yy
0, (t) = e?»y | 6,(0) cos t]+ sin t
2lyy J41ny2—K1 2lyy

: mLS Ly \/‘”nyZ‘KlZ K10+(0)+21,6,,(0 \/‘”nyZ‘KlZ
0,() = e | 6,(0) COS(t | + KOO+ 2y 6O ;) t
21y \/Kf—4lyyl<2 21y

note that our assumption about the imaginary roots is correct only if K}
—4l,,K, < 0.

3) Suppose the denominator has a double root. Notice that in such a
situation the equation K{ = 41,,, K, holds. so we can write

. . K.6,(0)
6,(0)s +6,(0) + —=~
0(s) = — Rt BK 2
s +Ls+ 2% S+ 57+ (1)
Iyy Iyy Zlyy ST Zlyy
K . . K, 0, (0
=>A<5+—1)+B =0,(0) s +6,(0) +— 7(0)
213/3/ IJ’J’
[A=6,(0)
= { B — K,6,(0) + 21,,,6,,(0)
\ 21,
Kyt K,6.,00) + 21,6, (0)
= Qy(t) = e *lyy <9y(0) +—2 o Yy t)

yy

As an outline, we rewrite what we have calculated:

f

—Kqt

6, (t) = e*»v | 6,(0) cos

. 1/.
= Hy(t) = E Qy(()) +

K{ — 41, K,>0

K,0,(0) + 21,,,6,(0)

K0,

J KZ — 41,,K,

(0) + 21,,,6,(0)

1/.
+§ Qy(()) —

\/ K? — 41,,,K,

* %k

L overdamped

K? —4l,,K, <0 =

\/ 4l,,K, — Ky

21,

—Kqt
= 0,(t) = e®y

L underdamped

J K — 41K,

* %k

K{ = 41,,K,

. oo — 2
| a6y @ +21,,6,(0) \/ 4lyy K, — Ky
S

1n t

21,

critically

<9y(0) +

21,

Kley(0)+21yy9y(0)t) { e

Imaginary Axis y(t) Imaginary Axis y(t)
A A i A Undamped
£>1 X—% > Overdamped £=0 -
Real Axis X Real Axis
—pt
0 A q 0
Imaginary Axis y(t) Imaginary Axis y(t)
A & A
X
0 < C » 1 > Underdamped C - 1 > Critically damped
X Real Axis Real Axis
-t
0 > 0

@ 2

A DC motor produces a torque that is proportional to the current
through the windings of the motor. Neglecting friction, the net torque
on the motor, therefore, is this torque minus the torque applied by
whatever load is connected to the motor. Newton’s second law (the

rotational version) gives

(kp) i(t) =

motor torque constant &~

X = kT

éw
j —> [

Assuming the motor is initially at

rest, we can rewrite the equation:

t t

w(t) = ?f i(0)dt — H () de

o ‘

x(t))=1—

= dt
\

torque applied by the load

Brushed DC Motor

Stator Magnets

Windings

Armature Brushes

Commutator

28
Terminals

In reality, the input to a DC motor is not a current, but is rather a
voltage. If we assume that the inductance of the motor windings is
negligible, then the relationship between voltage and current is given by

v(t) = Ri(t) + kpw(t)

where R is the resistance of the motor windings and k, is a constant
called the motor back electromagnetic force constant. The second term
appears because a rotating motor also functions as an electrical
generator, where the voltage generated is proportional to the angular
velocity.

So we can modify the previous equation:

kot dw
= (O —lpw(©) = x(6) = I —

kykr - (Rx(t) — kTv(t)) _ 0

.
LY RI

Chapter 3

* Discrete dynamics

A discrete system operates in a sequence of discrete steps and is said to
have discrete dynamics. Some systems are inherently discrete.

Example) A system counting the number of cars entering and leaving a

parking garage, in order to display the number of cars occupying the
garage.

ArrivalDetector

arrival
U Counter Display
- 4 | count —
DepartureDetector y g I ==
down
’__J d
departure

Figure 3.1: Model of a system that keeps track of the number of cars in a parking

garage.
Integrator The corresponding
N / N system that we had
l . .
(m%m in previous chapter

How to model the discrete systems?

guard / action

S1 S22 1
ctate

ﬂ o . indicator
Finite state machine

(automata)
However, it is

just for

| | showing the
up N—down /1 up A—down [2 up A—down [3 up A\ —down [M

TN\ states and

(3 © _j@ there may not
be a final

down/\—up /0 downi—up /1 downh—up /2 downt—up/M—1 state

inputs: up, down :(pure

output: count : {0, M} A pure signal is either present or absent

@f‘% Figure 3.4. FSM model for the garage counter of Figure 3.1. 32

@ action

Boolean predicate
For example:

True: Transition is always enabled.

pl: Transition is enabled if p1 is present.

— pl: Transition is enabled if p1 is absent.

pl A p2: Transition is enabled if both p1 and p2 are present.

plV p2 : Transition is enabled if either p1 or p2 is present.

Pl A = p2: Transition is enabled if pl is present and p2 is absent.

p3=1
p3>5

Suppose the setpoint is 20 degrees Celsius. If the
heater is on, then the thermostat allows the
temperature to rise past the setpoint to 22
degrees. If the heater is off, then it allows the
temperature to drop past the setpoint to 18

(@ degrees. This strategy is called hysteresis.
o

Statel

temperature < 18 / heatOn

temperature > 22 | heatOff

A model of a thermostat with hysteresis.

Hysteresis avoids chattering, where the heater would turn on and off
rapidly when the temperature is close to the setpoint temperature.

Event triggered like garage counter, HVAC (heating,
ventilation, and air conditioning)

FSM
Time triggered timed automata like traffic light

Extended State machine
The notation for FSMs becomes awkward when the number of states
gets large. The garage counter example illustrates this point clearly.
variable: c: {0,--- M}
inputs: up, down: pure

output: count: {0,--- ,M}

up \—down e <M [c+1

. ¢ =c+1
downh—uphec=>0/c—1
¢ c:=c—1

D
(M% Figure 3.8: Extended state machine for the garage counter of Figure 3.4.
~

variable: count: {0,--- ,60}
inputs: pedestrian : pure count < 60 /
outputs: sigR, sig(G, sig¥ : pure count := count + 1

count > 60 / sigG

pedestrian A\ count < 60 /
count = ()

count 1= count + 1

count := count +1 L pedestrian /\ count > 60 [sig¥

count := 0

' count 1= count + 1
= means '
assignment. In 0

order not to \ count > 5 [sigR
be confused count := () ;

with a
predicate.

count : _ _
count = 60 / sigl
count .= 0

count .= count + 1

Figure 3.10: Extended state machine model of a traffic light controller that keeps
track of the passage of time, assuming it reacts at regular intervals.

When pedestrian is present, the machine transitions to yellow if it has been
in state green for at least 60 seconds. Otherwise, it transitions to pending,
where it stays for the remainder of the 60 second interval. This ensures that
once the light goes green, it stays green for at least 60 seconds.

73
(>

Another example from out of the book

turnstile

36

Chapter 4

* Hybrid systems

We have learned so far

Continuous systems Discrete systems

U(s) " Y(s)
& Go » G p—— take train
A
take train @
wake
(j;; -
sleep

Now we want to

- " . | [d
Equilibrium Fe g X combine these systems.
position N s T 1 a2

de Why?

7o)

\

f\‘
A

In this section, we show that state
machines can be generalized to admit
continuous inputs and outputs and to
combine discrete and continuous

Computation

dynamics.
y , Information
_"31,,1..’ @ —
g o Systems

n

guard / action

statel

guard / action

guard / action

Figure 4.1: An FSM represented as an actor.

@ 59

#
F
¢
LB -
:
.-.
¥
&
»
E
?
;

T(t) = 22 heatOff

Pheatng) /y State Refinement

T(t) < 18/ heatOn

Figure 4.2: A thermostat modeled as an FSM with a continuous-time input signal.

; \ i o

guard / output
set action i
1:(;} =772 set action

“\

guard !oufput
\ set actjon

;: () < 18/

hit) =0 h(r)=1 time-based system time-based system

)
(ﬁ%}) Figure 4.3: A thermostat with continuous-time output. Figure 4.4: Notation for hybrid systems.
S—S

Recall the thermostat of Example 4.1, which uses hysteresis to prevent
chattering. An alternative implementation that would also prevent
chattering would use a single temperature threshold, but instead would
require that the heater remain on or off for at least a minimum amount
of time, regardless of the temperature. This design would not have the
hysteresis property, but may be useful nonetheless.

S is a continuous-time
signal with dynamics
givenby s (t)=1
representing the clock

This action ensures that

when the thermostat
starts, it can immediately
transition to the heating
mode if the temperature

] ensures that the heater
will always be on for at
least time T,.

7(t) is less than or equal h(t) =0 h(r) = 1
to 20 degrees. s(t) =1 §(t)=1

specifies that once the
) < 2060 > heater goes off, it will

| sl(r) T — | remain off for at least
time T..

3 Figure 4.5: A timed automaton modeling a thermostat with a single temperature
(ﬁ@ threshold, 20, and minimum times T, and T}, in each mode.

@ 201 2
hi(f)
y
(b) 04
s(1)
(c) 0

Figure 4.6: (a) A temperature input to the hybrid system of Figure 4.5, (b) the

output £, and (c) the refinement state s.

A

Y s(t)y =T | tick fick
timer s(t) =0 >

s(t) =1

A timed automaton that
generates a pure output
event every T time units.

42

Consider the physical system depicted below. Two sticky round masses
are attached to springs. The springs are compressed or extended and
then released. The masses oscillate on a frictionless table. If they
collide, they stick together and oscillate together. After some time, the
stickiness decays, and masses pull apart again.

P, P, : heutral position of two masses

k1l k2
'III \\\‘ respectively (when the springs are
L neither extended nor compressed)

1) If the masses are separate:

: @y
| v, () F=k(p—y) = m—oz
’ Q) * k;(p; — y; (¢
Vs = §.(t) = l(plm.yl()
l

2) With the masses stuck together, they behave as a single object with mass m1 +m2.
d?y

F=ki(p1—y)+ky(p,—y) = m_3

kipy + kopy — (ky + kp)y(t)

= y(t) = m +m, 43

StickyMasses
;‘1 ()
\
y1(0) =i
»2(0) =iz ya (1)
y1(0)=0 >
¥2(0) =0
) . _ kipr+kapa — (ki +ka2)y(t)
Vi(t) =ki(pr —yi(t))/m)= mp +m»
Va(t) = ka(p2 —y2(t))/ma2 y1(t) = y(t)
y2(t) = y(t)

Now, we must determine when the system changes it’s state. Then
we should find the velocity in each action, since in order to describe
the motion of system in each state, we need the position and velocity

A)
@ at the time that the state changes. .

The transition from apart to together has the guard y,(t) = y,(t)

When the masses stick together, based on the conservation of momentum

we have:
myy, (t) + myy,(t) = (g + my)y(t)

m,y,(t) + myy,(t)
m4q + mo

= y(t) =

The transition from together to apart has the more complicated guard:

(ki — kp)y(t) + kopy — kipy

That is, the right-pulling force on the right mass exceeds the

stickiness of
two masses

right-pulling force on the left mass by more than the stickiness.

Vi(t) =ki(pr —yi(z))/m

Va(t) = ka(p2 —y2(t))/m2

§(t) = kipi +kapa — (k) +ka)v(1)

StickyMasses yi(t) = ya(t)
yit) ==y (1)
¥(t) == (v (t)my +ya(t)mz) / (my +my) ;‘1 (7)
m}
2(0) g2 (ki —k2)y(t) +hkapr —kip1 > 5 ya(t)
y1(0) =0 ¥ [I% = }-‘Erj >
- (0) — yalt) = y(t)
2(0) =0 J1(t) = 5(0)
va(t) == y(t)

ity -+ M2

Figure 4.10: Hybrid system model for the sticky masses system considered in

Example 4.6.

&

46

Displacement of Masses
30 s 1v,t—
: Vo)==

(3 10 15 20 25 30 35 40 45 50

fme

D//B 6\\\ﬂ After determining all of the system features, we
—can predict the system behavior by programming
@ — or using a simulator. 47

X0

Example 4.7: Consider a bouncing ball. At time ¢ = 0, the ball 1s dropped from
a height y(0) = hg, where hg is the initial height in meters. It falls freely. At
some later time ¢ it hits the ground with a velocity y(¢;) < 0 m/s (meters per
second). A bump event is produced when the ball hits the ground. The collision is
inelastic (meaning that kinetic energy is lost), and the ball bounces back up with
velocity —ay(t1), where a is constant with 0 < a < 1. The ball will then rise to
a certain height and fall back to the ground repeatedly.

F Fo

| Y The system outputs a
BouncingBall \ bump \/\/\ bump each time the
v(t) =0/ bump > |t .
V(1) == —ay(t) , h ball hits the ground,
$3(1) and also outputs the
¥(1) position of the ball.
> :\wrkwl ;‘

This system is depicted as an event triggered system (y(t)=0). As an
exercise, think about converting it to a time triggered one. What makes
it problematic?

73
("

The plant, the physical process that is to be controlled

the @nvVironment in which the plant operates
Control system

the SENSOFS that measure some variables of the
plant and the environment

the controller that

determines the mode transition
structure and selects the time-
based inputs to the plant.

It has two levels:

1. supervisory control that
determines the mode transition
structure

determines which of several
Hybrid systems are ideal strategies should be followed

for modeling such two- 2. low-level control that
level controllers. determines the time-based inputs to
the plant
((:) implements the selected strategy

-
"

Gl

—nt < w(t) < 7w rad/sec

Consider an
automated guided
vehicle (AGV). We
will design a
controller so that the
vehicle closely

follows the track. pov
e ¢!
x(t) = u(t) cos0(t)
t has two degrees ZA y(t) = u(t) sin 6(t)
of freedom: 0% 6(t) = w(t)

RHEETEN LV ETATE TG We ignore the inertia of the vehicle, so we assume that we
can instantaneously change the velocity or angular speed.

The two-level controller design is based on a simple idea. The vehicle always
moves at 1ts maximum speed of 10 mph. If the vehicle strays too far to the left
of the track, the controller steers it towards the right; if it strays too far to the
right of the track, the controller steers it towards the left. If the vehicle 1s close
to the track, the controller maintains the vehicle in a straight direction. Thus the
@ controller guides the vehicle in four modes, left, right, straight, and stop. In stop

mode, the vehicle comes to a halt. 20

straight

#(t) = 10cosf(t)
y(t) = 10sinf(t)
6(t) = 0
left
#(t) = 10cos6(t)
y(t) = 10sinf(t)
0(t) = =«
right
#(t) = 10cosé(t)
y(t) = 10sinf(t)
{-}'(t) = —T7
stop
z(t) = 0
it) = 0
0(t) = 0

Now, we’ve designed
a low level control,

specifying what to do in
@ each decision.

x(t) = 10cosB(t)
y(t) = 10sin8B(t)
() = -=x
stop
>
Vehicle
start
g x(0)
y(0)
8(0)
M) = O
)y = 0
8(t) = 0

x(t) = 10cosB(r)
y(t) = 10sinB(r)
8t) = 0
x(t)
_‘\ straight /‘
y(t)
=3
x(t) 10cos6(1)
y(t) = 10sinB(¢)
et) = =

&

We design the supervisory control governing transitions between modes in such
a way that the vehicle closely follows the track, using a sensor that determines
how far the vehicle is to the left or right of the track. We can build such a sensor
using photodiodes. Let’s suppose the track is painted with a light-reflecting color,
whereas the floor is relatively dark. Underneath the AGV we place an array of
photodiodes as shown in Figure 4.14. The array i1s perpendicular to the AGVY
body axis. As the AGV passes over the track, the diode directly above the track
generates more current than the other diodes. By comparing the magnitudes of
the currents through the different diodes, the sensor estimates the displacement
e(t) of the center of the array (hence, the center of the AGV) from the track. We
adopt the convention that e(t) < 0 means that the AGV is to the right of the track
and e(f) = O means it is to the left. We model the sensor output as a function f
of the AGV s position,

vt, e(t) = f(z(t),u(t)).

The function f of course depends on the environment—the track. We now specify
the supervisory controller precisely. We select two thresholds, 0 < €1 < €2, as
shown in Figure 4.14. If the magnitude of the displacement is small, |e(t)] < €1,
we consider that the AGV is close enough to the track, and the AGV can move
straight ahead, in straight mode. If e(f) = €5 (e(t) 1s large and positive), the AGV
has strayed too far to the left and must be steered to the right, by switching to
right mode. If e(f) < —es (e(t) 1s large and negative), the AGV has strayed too
far to the night and must be steered to the left, by switching to left mode.

52

- \ Light Coloured
n- type Surface
e ;L,L; : /

/ \
::(U-- 3 Photodiode
B
- 7 IRLED
p type —— e @ Black Surface
: T/\..L‘J—- -
@ Photodiode

track

photodiode AGV

53

Transitions are

added as
supervisory control

stop

S8

Start

i(t) = 10cos8(t)
v(t) = 10sinB(t)
B(1) = -=

e(t) = flx(t),y(1))
Vehicle

x(0)
¥(0)
B(0)

x(t) =
¥(t) =
B(r) =

elt) =

0

0
Silx(e),vlr))

x(t)
0,
a(r)

elt)

10cosB(1)
10sin®(f)
Y]

Fx(e),x(t))

stop M e(t) = €3

—stop A le(t)| < &

straight

~

stop

—stop helt) < —€

J

W

'|_ \I‘I

=

Ve T

= 2,

% =

< =
By,
2
-]
r

(left

x(t)

v(t)

10cosB(1)
10sin8(t)
n
flx(e),vle))

54

track

(el

7z

Figure 4.15: A trajectory of the AGV, annotated with modes.
In this example: x(t)

fa'c(t) = u(t) cos 6(t)

1) The plant is described by differential equations { ¥(t) = u(t) sin8(t) that govern

\ 6(t) = w(t)

the evolution of the continuous state at time t, (x(t); y(t); 6(t)), in terms of the
plant inputs u and w.

55

7Y The environment ic the cloced track

3) The sensor is the photodiode array, measuring the position of the
AGV relative to the track (e(t)).

4)
i) The supervisory controller comprises the four modes and the

guards that determine when to switch between modes.

ii) The low-level controller specifies how the time-based inputs
to the plant, u and w, are selected in each mode.

Hybrid Systems

Computer Science Control theory

Finite state machines Continuous dynamical systems

B
(56

Chapter 5

 Composition of State Machines

State machines provide a convenient way to model behaviors of
systems. One disadvantage that they have is that for most interesting
systems, the number of states is very large, often even infinite.
Automated tools can handle large state spaces, but humans have more
difficulty with any direct representation of a large state space. A time-
honored principle in engineering is that complicated systems should be
described as compositions of simpler systems. This chapter gives a
number of ways to do this with state machines.

o o,
Composition P ofje t N

techniques L "
(. .
» machines react simultaneously (synchronous)
concurrent composition . . ,
3 machines react independently (asynchronous
. variable declaration(s) L
\ hierarchy s Saront)
guard .n’tmuttp_:iut action
@ initial set action guarc;é!toaucttpi:;;action

Synchrony has different meanings in different contexts. The meaning

used in this chapter underlies the synchronous languages.

 the outputs of components in a program are (conceptually)
simultaneous with their inputs (synchrony hypothesis).

J components in a program execute (conceptually) simultaneously and
instantaneously.

concurrent composition

1) Side-by-Side Synchronous Composition:

The state machines being composed do not communicate.

The inputs and outputs of the two actors are disjoint.

o)
(+_ Side-by-side composition of two actors

Synchronous side-by-side composition is simple for several reasons.

 we know that the environment determines when a state machine
reacts. In synchronous side-by-side composition, the environment
need not be aware that € is a composition of two state machines.
Such compositions are modular in the sense that the composition
itself becomes a component that can be further composed as if it
were itself an atomic component.

 if the two state machines A and B are deterministic, then the
synchronous side-by-side composition is also deterministic. We say
that a property is compositional it a property held by the
components is also a property of the composition. For synchronous
side-by-side composition, determinism is a compositional property.

1 a synchronous side-by-side composition of finite state machines is
itself an FSM.

@ 0

Notice that (s1; s4)
and (s2; s3) are not
reachable states.

Figure 5.3: Example of side-by-side composition of two actors.

@ Figure 5.4: Single state machine giving the semantics of synchronous side-by-

outputs: a, b : pure

output: a: pure
true [a

output: b : pure

true /
2L

true / b

B

outputs: a, b : pure

true / a

triue [b

true /a, b

true [

C

=

\

side composition of the state machines in Figure 5.3.

a

61

2) Side-by-Side Asynchronous Composition:

In an asynchronous composition of state machines, the component
machines react independently. This statement is rather vague, and in
fact, it has several different interpretations. Each interpretation gives a
semantics to the composition. The key to each semantics is how to
define a reaction of the composition C. Two possibilities are:

Semantics 1) A reaction of Cis a reaction of one of A or B, where the
choice is nondeterministic. (interleaving semantics, i.e. A or B never
react simultaneously. Their reactions are interleaved in some order.)

Semantics 2) A reaction of Cis a reaction of 4, B, or both A and B,

where the choice is nondeterministic. A variant of this possibility might
allow neither to react.

&)
(62

under these semantics machines A and B may completely miss input
events. That is, an input to C destined for machine A may be present in a
reaction where the nondeterministic choice results in B reacting rather
than A. If this is not desirable, then some control over scheduling or
synchronous composition becomes a better choice.

outputs: a, b : pure
outputs: a, b : pure

output: a: pure

a f
true / a p a true | a

true / i
A semantics 1

output: b : pure

true /

FC = 17

true / b B

C true / C

This machine is nondeterministic. Note
red arrows show that if we had chosen semantics 2, then it
(m%} nondeterminism would also be able to move to (s2; s4).

In the case of semantics 1 and 2 given 1n Section 5.1.2, the choice of which compo-
nent machine reacts 1s nondeterministic. The model does not express any particular
constraints. It 1s often more useful to introduce some scheduling policies, where the
environment 1s able to influence or control the nondeterministic choice. This leads to
two additional possible semantics for asynchronous composition:

e Semantics 3. A reaction of C 1s a reaction of one of A or B, where the environ-
ment chooses which of A or B reacts.

e Semantics 4. A reaction of C' 1s a reaction of A, B, or both A and B, where the
choice 1s made by the environment.

Like semantics 1. semantics 3 1s an interleavine semantics. ed\)\m%
O SC\’\

Shared Variables

An extended state machine has local variables that can be read and written as
part of taking a transition. Sometimes it is useful when composing state
machines to allow these variables to be shared among a group of machines. In
particular, such shared variables can be useful for modeling interrupts and
threads. Many complications arise, including the memory consistency model
and the notion of atomic operations.

@ o

Consider two servers that can receive requests from a network. Each request requires
an unknown amount of time to service, so the servers share a queue of requests. If
one server is busy, the other server can respond to a request, even if the request
arrives at the network interface of the first server.

shared variable pending:
number of pending job requests

When a request arrives at
the composite machine
C, one of the two servers
is nondeterministically
chosen to react,
assuming asynchronous
composition under
semantics 1. If that server
is idle, then it proceeds
to serve the request. If
the server is serving
another request, then
one of two things can
happen:

7o)

~3

Fequest

>

shared variable: pending: int
input: request: pure
outputs: doned, doneB . pure

input: reguest: pure
output: done: pure

—request/

reguest M pending = 0/ done

done doneA

-—p

request —reguest M pending = (/done pending = pending — 1
—p FevTmn " - .
(idle) \ Serving request /done
pending .= 1) request| request /
pending = 0 A\ —request/ ~ Pending = pending + 1
pending 1= pending — | A

input: reqguest: pure
output: done: pure

>

request

[idle |

&,

pending

pending = 04

—request M pending = (1 done

w

request|

request |

pending — 1

—request|

—request M pending > 0 /done

pending = pending — 1
-

4
semving request {done

request |
pending := pending + 1

done| doneB

—

Figure 5.6: Model of two servers with a shared task queue, assuming asyn-
chronous composition under semantics 1.

it can coincidentally finish serving the request it is currently serving, issuing the output done,
and proceed to serve the new one, or it can increment the count of pending requests and
continue to serve the current request. The choice between these is nondeterministic, to model
the fact that the time it takes to service a request is unknown.

If C reacts when there is
no request, then again
either server A or B will be
selected non-
deterministically to react.
If the server that reacts is
idle and there are one or
more pending requests,
then the server transitions
to serving and decrements
the variable pending. If
the server that reacts is
not idle, then one of three
things can happen.

)

shared variable: pending: int
input: request: pure
outputs: doned, doneB . pure

input: reguest: pure
output: done: pure

—request/

reguest M pending = 0/ done

request mrequest /\pending — 0/ done pending = pending — |
. = ; done doneA
> (idle) \ Serving request /done —
: (i
pending .= 1) TeqUEsts request /
pending = 0 A\ —request/ ~ Pending = pending + 1
pending 1= pending — | A
reques
-
input: reqguest: pure
output: done: pure .
—request
) _ . —request M pending > 0 /done
—request M pending = (1 done pending ‘= pending — |
- 4 done| doneB
r&'{}'“&’fn'f b Id IE &\-“‘———_——F’""-’K‘ i rvlng. I rﬁq'"“"j'l'!-":‘ff]”f . -

request|

pending = 0 A —request/

pending 1= pending — |

request |
pending := pending + 1

Figure 5.6: Model of two servers with a shared task queue, assuming asyn-

chronous composition under semantics 1.

It may continue serving the current request, in which case it simply transitions on the
self transition back to serving. Or it may finish serving the request, in which case it will
transition to idle if there are no pending requests, or transition back to serving and

decrement pending if there are pending requests.

Notice that because of
the interleaving
semantics, accesses to
the shared variable are
atomic operations

Fequest

)

shared variable: pending: int
input: request: pure
outputs: doned, doneB . pure
input: reguest: pure
output: done: pure .
P P —reguest)
X i Vd reguest M pending = 0/ done
request —reguest s pending = (V/ done pending := pending — |
. = ; done doneA
> (idle) \ Serving request /done —
: (i
pending .= 1) TeqUEsts request /
pending = 0 A\ —request/ ~ Pending = pending + 1
pending 1= pending — | A
-
input: reqguest: pure
output: dene: pure .
—request
) _ . —request M pending > 0 /done
—request M pending = (1 done pending ‘= pending — |
- 4 done| doneB
request \Idle &\H-—...___...---"’k MLy request /done »-—p
request/
quest, request |
pending > 0/ —request/ ~ Pending = pending + 1
pending 1= pending — | B
C

Figure 5.6: Model of two servers with a shared task queue, assuming asyn-
chronous composition under semantics 1.

The choice of semantics 1 is reasonable in this case because the input
goes to both of the component machines, so regardless of which
component machine reacts, no input event will be missed. However, this
semantics would not work if the two machines had independent inputs,
because then requests could be missed. Semantics 2 can help prevent
that, but what strategy should be used by the environment to determine
which machine reacts? What if the two independent inputs both have
requests present at the same reaction of C? If we choose semantics 4 to
allow both machines to react simultaneously, then what is the meaning
when both machines update the shared variable? The updates are no
longer atomic, as they are with an interleaving semantics. Note further
that choosing asynchronous composition under semantics 1 allows
behaviors that do not make good use of idle machines. In particular,
suppose that machine A is serving, machine B is idle, and a request
arrives. If the nondeterministic choice results in machine A reacting,
then it will simply increment pending. Not until the nondeterministic
choice results in B reacting will the idle machine be put to use. In fact,
@ semantics 1 allows behaviors that never use one of the machines.

Cascade Composition (serial composition)
The output of A must be valid is an input for B.

For cascade composition, if we wish the composition to be
asynchronous, then we need to introduce some machinery for buffering
the data that is sent from A to B. We defer discussion of such
asynchronous composition to Chapter 6, where dataflow and process
network models of computation will provide such asynchronous
composition. In this chapter, we will only consider synchronous

composition for cascade systems.
i o 12 09

i &
\\ 3 ’J'
£, -
. 1 i e

b . (T i
"a.\‘ ___-I'
" -
= o

((a\ Cascade composition of two actors.

(s1,54) and
(s2, s3) are
not
reachable
states!

A

input: a: pure
output: b: pure

I .I.'I

alhb true |
-

(s2)

b b

input: b: pure
output: ¢: pure

true /

Figure 5.8: Example of a cascade composition of two FSMs.

il

Figure 5.9: Semantics of the cascade composition of Figure 5.8, assuming syn-

chronous composition.

mput: a: pure
output: c: pure

&

variable: count: {0,---,60}
inputs: pedestrian : pure

count < 60 /
outputs: sigR, sigG, sig¥ : pure

count ‘= count + 1

~

count > 60 [sigG

pedestrian /\ count < 60 /
count := ()

count ;= count + 1

count := count + 1 - pedestrian A count > 60 [sig¥

count := 0

Vcount = count + 1

pendlng ;

count = ()
tount > 60 / sigy
count = 5 [sigR count := 0

count 1= ()

count 1= count + 1

Figure 3.10: Extended state machine model of a traffic light controller that keeps
track of the passage of time, assuming it reacts at regular intervals.

variable: pcount: {0,--- 55}
input: sigh': pure
outputs: pedG, pedR: pure

peount :=10) peount > 55 [pedR

red

sigR / pedG
pcount 1= ()

/

Figure 5.10: A model of a pedestrian crossing light, to be composed in a syn-
chronous cascade composition with the traffic light model of Figure 3.10.

pcount = pcount + |

We want to
compose
these models

The output
SigR of the
traffic light can
provide the
input sigR of
the pedestrian
light. 71

variables: count: {0, 60}, peount: {0, 55}

input: pedestrian: pure count < 60 /
outputs: sigl, sigls, sigl, ped(, pedR: pure count 1= count + |
| Y < |
count = 60 [/ sig(F 'CQFEE”' red pedestrian A count < 60)

COuRD L=

edestrian A count > 60 [sigh F
count := count + 1 P count ‘=0 5 pending, red count -= couni + 1
Count = 60) [sigl
yellow, red) count 1= 1

~
peount = 5% [pedR ;

count = count + 1
counkl -= count+ 1

count = 5 [sigR, ped(z
count == ()
prount =1

. red, green
count = () :

poount =)

count 1= count + 1
poount <= poount -+ |

Figure 5.11: Semantics of a synchronous cascade composition of the traffic light
model of Figure 3.10 with the pedestrian light model of Figure 5.10.

Note that unsafe states, such as (green, green), are not reachable states, and hence .
are not shown.

General Composition

Side-by-side and cascade composition provide the basic building blocks
for building more complex compositions of machines.

Hierarchical State Machines

g1/ ap

which machine should react first, B or A,?
This conundrum will be resolved in the next

chapter when we explain the synchronous-
reactive model of computation.

State refinements can be another FSM

g1/MNga [/ as; ay

|=

g1Mgsy /[as; ai

Consider the hierarchical FSM depicted below is in state C. A subtle
question is what happens if both guards g, and g, evaluate to true.
Such subtle questions help account for the proliferation of different
variants of Statecharts.

We choose a particular semantics that has attractive modularity
properties. In this semantics, a reaction of a hierarchical FSM is defined
in a depth-first fashion. The deepest refinement of the current state
reacts first, then its container state machine, then its container, etc.
this means that if the machine is in state B, then the refinement
machine reacts first.

bl
=

&) g4/ as g1/ a

g1/ m

Y N
g
\j
g/ az
g3/ a;
T o
\P _j
g4 [as
g1/ ar
gcliPe
\—..'-/
82/ az
g/ a3
dhc
\P_/
g4/ as

The transition from A to B is called a
reset transition because the destination
refinement is reset to its initial state,
regardless of where it had previously
been. A reset transition is indicated in
our notation with a hollow arrowhead
at the destination end of a transition.

the transition from A to B is a history
transition, an alternative to a reset
transition. In our notation, a solid
arrowhead denotes a history transition.
It may also be marked with an “H” for
emphasis. When a history transition is
taken, the destination refinement
resumes in whatever state it was last in
(or its initial state on the first entry).

g1/\g3 [asia)

g/ az

81 /\g4 [ag ~g1Ng3 /a3

g1A—g3 [a

g1 Mgy [ag;a

B
(2,

