
1

modeling in
embedded systems

By MohammadJavad Vaez
Supervisor: Professor Jamshidi

2

In this
presentation, we

will discuss
chapters 2-5.

3

Chapter 2

• Continuous dynamics

4

Six degrees of freedom (𝑥, 𝑦, 𝑧, 𝜃𝑥, 𝜃𝑦 , 𝜃𝑧)

vector x vector θ

Newton’s second law:
𝐹 𝑡 = 𝑀 ሷ𝑥 𝑡

In fact

𝐹 𝑡 =
𝑑𝑃

𝑑𝑡
=

𝑑

𝑑𝑡
𝑀 𝑡 𝑣 𝑡 = 𝑀𝑎(𝑡)

We consider the mass is constant

5

6

remembrance

7

Newton’s second law:

𝑇 𝑡 =
𝑑𝐿

𝑑𝑡
=

𝑑

𝑑𝑡
(𝐼 𝑡 ሶ𝜃 𝑡)

moment of inertia tensor
It depends on the geometry and orientation of the object.
It represents the reluctance that an object has to spin around any axis
as a function of its orientation along the three axes.

𝐼𝑦𝑥 𝑡 is the inertia that determines how acceleration around the x axis

is related to torque around the y axis.

8

If the object is spherical, for example, this reluctance is the same
around all axes, so the moment of inertia reduces to a constant scalar 𝐼.

𝑇 𝑡 =
𝑑

𝑑𝑡
𝐼 𝑡 ሶ𝜃 𝑡 = 𝐼 ሷ𝜃(𝑡)

9

𝑥 𝑡 = 𝑥 0 + 𝑡 ሶ𝑥 𝑡 +
1

𝑀
න

0

𝑡

න

0

𝜏

𝐹 𝛼 𝑑𝛼𝑑𝜏

𝜃 𝑡 = 𝜃 0 + 𝑡 ሶ𝜃 𝑡 +
1

𝐼
න

0

𝑡

න

0

𝜏

𝑇 𝛼 𝑑𝛼𝑑𝜏

10

11

We are familiar with the concept of a system from the lesson “Signals
and Systems”. Now, we can depict the actor model for the helicopter as
follows:

It can be represented as a cascade composition of two actors as follows:

𝐼𝑦𝑦
ሶ𝜃𝑦(0)

parameters of the actor

1

𝐼𝑦𝑦
𝑇𝑦 ሶ𝜃𝑦(0) ሶ𝜃𝑦

𝑦2 𝑡 = 𝑖 + න

0

𝑡

𝑥2 𝜏 𝑑𝜏

12

We can also argue about different properties of a system. For example
causality, to have or not to have memory, linearity, time invariance and
stability.

The helicopter system defined by this equation
ሶ𝜃𝑦 = ሶ𝜃𝑦 0 +

1

𝐼𝑦𝑦
0׬
𝑡
𝑇𝑦 𝜏 𝑑𝜏 is not time invariant.

However, this equation describes a time invariant system:

ሶ𝜃𝑦 =
1

𝐼𝑦𝑦
∞−׬
𝑡

𝑇𝑦 𝜏 𝑑𝜏

Since
1

𝐼𝑦𝑦
∞−׬
𝑡

𝑇𝑦 𝜏 − 𝛼 𝑑𝜏 =
1

𝐼𝑦𝑦
∞−׬
𝑡−𝛼

𝑇𝑦 𝜏 𝑑𝜏 = ሶ𝜃𝑦 𝑡 − 𝛼

The helicopter it’s also unstable. Let the input be 𝑇𝑦 = u (unit step).

Then ሶ𝜃𝑦 grows without bound. In practice, a helicopter uses a feedback

system to determine how much torque to apply at the tail rotor to
keep the body of the helicopter straight.

13

We can stabilize the helicopter with a simple feedback control system,
as shown below.

𝜓 = 𝑑𝑖𝑠𝑖𝑟𝑒𝑑 𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦
e = difference between the actual and the
desired angular velocity

ሶ𝜃𝑦 t = ሶ𝜃𝑦 0 +
1

𝐼𝑦𝑦
න

0

𝑡

𝑇𝑦 𝜏 𝑑𝜏

= ሶ𝜃𝑦 0 +
𝐾

𝐼𝑦𝑦
න

0

𝑡

𝜓 𝜏 − ሶ𝜃𝑦 𝜏 𝑑𝜏
An integral (or differential) equation
Assume 𝜓 𝑡 = 0

= ሶ𝜃𝑦 0 −
𝐾

𝐼𝑦𝑦
න

0

𝑡

ሶ𝜃𝑦 𝜏 𝑑𝜏

⇒ ሷ𝜃𝑦 𝑡 =
−𝐾

𝐼𝑦𝑦
ሶ𝜃𝑦 𝑡 ⟹ 𝑠 ሶΘ𝑦 𝑠 − ሶ𝜃𝑦 0 =

−𝐾

𝐼𝑦𝑦
ሶΘ𝑦 𝑠derivation

Laplace

Transform

⇒ ሶΘ𝑦 𝑠 =
ሶ𝜃𝑦 0

𝑠+
𝐾

𝐼𝑦𝑦

⇒ ሶ𝜃𝑦 𝑡 = ሶ𝜃𝑦 0 𝑒
−
𝐾𝑡
𝐼𝑦𝑦𝑢(𝑡)

Proportional controller

When K is bigger, ሶ𝜃𝑦 converges faster to the desired output

14

Assume that the helicopter is initially at rest, i.e ሶ𝜃 0 = 0
and the desired signal is 𝜓 𝑡 = 𝑎𝑢 𝑡
So we wish the helicopter to rotate at a fixed rate.

ሶ𝜃𝑦 t =
1

𝐼𝑦𝑦
න

0

𝑡

𝑇𝑦 𝜏 𝑑𝜏 =
𝐾

𝐼𝑦𝑦
න

0

𝑡

𝜓 𝜏 − ሶ𝜃𝑦 𝜏 𝑑𝜏 =
𝐾

𝐼𝑦𝑦
න

0

𝑡

𝑎𝑑𝜏 −
𝐾

𝐼𝑦𝑦
න

0

𝑡

ሶ𝜃𝑦 𝜏 𝑑𝜏

=
𝐾𝑎𝑡

𝐼𝑦𝑦
−

𝐾

𝐼𝑦𝑦
න

0

𝑡

ሶ𝜃𝑦 𝜏 𝑑𝜏 ⟹ ሶ𝜃𝑦 𝑡 = 𝑎𝑢(𝑡)(1 − 𝑒
−𝐾𝑡
𝐼𝑦𝑦)

Using same

techniques

The above example is somewhat unrealistic because we cannot
independently control the net torque of the helicopter. Actually
𝑇𝑦 𝑡 = 𝑇𝑡 𝑡 + 𝑇𝑟(𝑡)

Torque due to
the top rotor

Torque due to
the tail rotor

𝑇𝑡 will be determined by the rotation required to maintain or achieve a
desired altitude. Thus, we will actually need to design a control system

that controls 𝑇𝑟 and stabilizes the helicopter for any 𝑇𝑡.

15

Suppose 𝑇𝑡 = 𝑏𝑢(𝑡) and the helicopter is initially at rest.

16

we see that the portion of the model enclosed in the box is exactly the
same as the control system analyzed in Slide 12. Thus, the same analysis
still applies.

Suppose that desired angular rotation is 𝜓 𝑡 = 0

Then the input to the original control system = 𝜓 𝑡 +
T t

K
=

𝑏

𝐾
𝑢(𝑡)

⟹ 𝐵𝑎𝑠𝑒𝑑 𝑜𝑛 𝑆𝑙𝑖𝑑𝑒 14: ሶ𝜃𝑦 𝑡 =
𝑏

𝐾
𝑢(𝑡)(1 − 𝑒

−𝐾𝑡

𝐼𝑦𝑦)

17

ሶ𝜃𝑦 𝑡 =
𝑏

𝐾
𝑢(𝑡)(1 − 𝑒

−𝐾𝑡
𝐼𝑦𝑦)

The desired angular rotation is zero, but the control system

asymptotically approaches a non-zero angular rotation of
𝑏

𝐾
. This

tracking error can be made arbitrarily small by increasing the control
system feedback gain K, but with this controller design, it cannot be
made to go to zero.

18

PI controller

Now, consider how the output will change using a proportional
integrator controller, which is depicted as follows:

Suppose 𝑇𝑡 = 𝑏𝑢 𝑡
𝜓 𝑡 = 0

ሶ𝜃𝑦 t =
1

𝐼𝑦𝑦
න

0

𝑡

𝑇𝑦 𝜏 𝑑𝜏 =
1

𝐼𝑦𝑦
න

0

𝑡

(𝑇𝑟 𝜏 + 𝑇𝑡 𝜏)𝑑𝜏

=
1

𝐼𝑦𝑦
න

0

𝑡

(𝐾1 𝜓 𝜏 − ሶ𝜃𝑦 𝜏 + 𝐾2න

0

𝜏

𝜓 𝛼 − ሶ𝜃𝑦 𝛼 𝑑𝛼 + 𝑇𝑡 𝜏)𝑑𝜏

19

Using the assumption that 𝜓 𝑡 = 0, we have

ሶ𝜃𝑦 t =
1

𝐼𝑦𝑦
න

0

𝑡

(−𝐾1 ሶ𝜃𝑦 𝜏 − 𝐾2න

0

𝜏

ሶ𝜃𝑦 𝛼 𝑑𝛼 + 𝑇𝑡 𝜏)𝑑𝜏

=
1

𝐼𝑦𝑦
න

0

𝑡

−𝐾1 ሶ𝜃𝑦 𝜏 − 𝐾2න

0

𝜏

ሶ𝜃𝑦 𝛼 𝑑𝛼 𝑑𝜏 +
1

𝐼𝑦𝑦
න

0

𝑡

𝑏𝑑𝜏

=
1

𝐼𝑦𝑦
න

0

𝑡

−𝐾1 ሶ𝜃𝑦 𝜏 − 𝐾2න

0

𝜏

ሶ𝜃𝑦 𝛼 𝑑𝛼 𝑑𝜏 +
𝑏𝑡

𝐼𝑦𝑦

⟹ ሷ𝜃𝑦 𝑡 =
1

𝐼𝑦𝑦
−𝐾1 ሶ𝜃𝑦 𝑡 − 𝐾2න

0

𝑡

ሶ𝜃𝑦 𝛼 𝑑𝛼 +
𝑏

𝐼𝑦𝑦

⟹
𝑑3𝜃

𝑑𝑡3
=

1

𝐼𝑦𝑦
−𝐾1 ሷ𝜃𝑦 𝑡 − 𝐾2 ሶ𝜃𝑦 t

20

⟹ s2 ሶΘ 𝑠 − 𝑠 ሶ𝜃𝑦 0 − ሷ𝜃𝑦 0 =
1

𝐼𝑦𝑦
−𝐾1𝑠 ሶΘ 𝑠 + 𝐾1 ሶ𝜃𝑦 0 − 𝐾2 ሶΘ 𝑠

⟹ 𝐼𝑦𝑦s
2 + 𝐾1𝑠 + 𝐾2 ሶΘ 𝑠 = 𝐼𝑦𝑦 𝑠 ሶ𝜃𝑦 0 + ሷ𝜃𝑦 0 + 𝐾1 ሶ𝜃𝑦 0

ሶΘ 𝑠 =
𝐼𝑦𝑦 ሶ𝜃𝑦 0 𝑠 + 𝐼𝑦𝑦 ሷ𝜃𝑦 0 + 𝐾1 ሶ𝜃𝑦 0

𝐼𝑦𝑦s
2 + 𝐾1𝑠 + 𝐾2

=

ሶ𝜃𝑦 0 𝑠 + ሷ𝜃𝑦 0 +
𝐾1 ሶ𝜃𝑦 0
𝐼𝑦𝑦

s2 +
𝐾1
𝐼𝑦𝑦

𝑠 +
𝐾2
𝐼𝑦𝑦

Now, based on the roots of the denominator, there are different
strategies for fraction decomposition. Since K1 and K2 are unknown, we
must consider all the strategies.
1) Suppose the denominator has two distinct roots. Then we can write

ሶ𝜃𝑦 0 𝑠 + ሷ𝜃𝑦 0 +
𝐾1 ሶ𝜃𝑦 0
𝐼𝑦𝑦

s2 +
𝐾1
𝐼𝑦𝑦

𝑠 +
𝐾2
𝐼𝑦𝑦

=
𝐴

𝑠 − 𝑟1
+

𝐵

𝑠 − 𝑟2

21

ሶΘ 𝑠 =

ሶ𝜃𝑦 0 𝑠 + ሷ𝜃𝑦 0 +
𝐾1 ሶ𝜃𝑦 0
𝐼𝑦𝑦

s2 +
𝐾1
𝐼𝑦𝑦

𝑠 +
𝐾2
𝐼𝑦𝑦

=
𝐴

𝑠 − 𝑟1
+

𝐵

𝑠 − 𝑟2

Where 𝑟1 =
−𝐾1+ 𝐾1

2−4𝐼𝑦𝑦𝐾2

2𝐼𝑦𝑦
and 𝑟2 =

−𝐾1− 𝐾1
2−4𝐼𝑦𝑦𝐾2

2𝐼𝑦𝑦

⟹

𝐴+𝐵 = ሶ𝜃𝑦 0

−𝐴𝑟2 − 𝐵𝑟1 = ሷ𝜃𝑦 0 +
𝐾1 ሶ𝜃𝑦 0

𝐼𝑦𝑦

⟹ −𝐴𝑟2 − ሶ𝜃𝑦 0 − 𝐴 𝑟1 = ሷ𝜃𝑦 0 +
𝐾1 ሶ𝜃𝑦 0

𝐼𝑦𝑦

⟹−𝐴 ×

−𝐾1 − 𝐾1
2 − 4𝐼𝑦𝑦𝐾2

2𝐼𝑦𝑦
− ሶ𝜃𝑦 0 − 𝐴

−𝐾1 + 𝐾1
2 − 4𝐼𝑦𝑦𝐾2

2𝐼𝑦𝑦
= ሷ𝜃𝑦 0 +

𝐾1 ሶ𝜃𝑦 0

𝐼𝑦𝑦

𝐾1
2 − 4𝐼𝑦𝑦𝐾2>0

22

⟹ 𝐴𝐾1 + 𝐴 𝐾1
2 − 4𝐼𝑦𝑦𝐾2 + ሶ𝜃𝑦 0 𝐾1 − ሶ𝜃𝑦 0 𝐾1

2 − 4𝐼𝑦𝑦𝐾2 − 𝐴𝐾1

+ 𝐴 𝐾1
2 − 4𝐼𝑦𝑦𝐾2 = 2𝐼𝑦𝑦 ሷ𝜃𝑦 0 + 2𝐾1 ሶ𝜃𝑦 0

⟹ 2𝐴 𝐾1
2 − 4𝐼𝑦𝑦𝐾2 = ሶ𝜃𝑦 0 𝐾1 + 𝐾1

2 − 4𝐼𝑦𝑦𝐾2 + 2𝐼𝑦𝑦 ሷ𝜃𝑦 0

⟹ A =
ሶ𝜃𝑦 0

2
+
𝐾1 ሶ𝜃𝑦 0 + 2𝐼𝑦𝑦 ሷ𝜃𝑦 0

2 𝐾1
2 − 4𝐼𝑦𝑦𝐾2

⟹ B =
ሶ𝜃𝑦 0

2
−
𝐾1 ሶ𝜃𝑦 0 + 2𝐼𝑦𝑦 ሷ𝜃𝑦 0

2 𝐾1
2 − 4𝐼𝑦𝑦𝐾2

23

Now, we can analyze the system behavior over time using Laplace
inverse transform:
ሶ𝜃𝑦 t = 𝐴𝑒𝑟1𝑡 + 𝐵𝑒𝑟2𝑡

=
1

2
ሶ𝜃𝑦 0 +

𝐾1 ሶ𝜃𝑦 0 + 2𝐼𝑦𝑦 ሷ𝜃𝑦 0

𝐾1
2 − 4𝐼𝑦𝑦𝐾2

𝑒

−𝐾1+ 𝐾1
2−4𝐼𝑦𝑦𝐾2

2𝐼𝑦𝑦
𝑡

+
1

2
ሶ𝜃𝑦 0 −

𝐾1 ሶ𝜃𝑦 0 + 2𝐼𝑦𝑦 ሷ𝜃𝑦 0

𝐾1
2 − 4𝐼𝑦𝑦𝐾2

𝑒

−𝐾1− 𝐾1
2−4𝐼𝑦𝑦𝐾2

2𝐼𝑦𝑦
𝑡

24

2) Suppose the denominator has two imaginary roots. Then we can
write:

ሶΘ 𝑠 =

ሶ𝜃𝑦 0 𝑠 + ሷ𝜃𝑦 0 +
𝐾1 ሶ𝜃𝑦 0
𝐼𝑦𝑦

s2 +
𝐾1
𝐼𝑦𝑦

𝑠 +
𝐾2
𝐼𝑦𝑦

=

ሶ𝜃𝑦 0 𝑠 +
𝐾1
2𝐼𝑦𝑦

+ ሷ𝜃𝑦 0 +
𝐾1 ሶ𝜃𝑦 0
2𝐼𝑦𝑦

𝑠 +
𝐾1
2𝐼𝑦𝑦

2

+
4𝐼𝑦𝑦𝐾2 − 𝐾1

2

4𝐼𝑦𝑦
2

ሶ𝜃𝑦 t = 𝑒
−𝐾1𝑡

2𝐼𝑦𝑦 ሶ𝜃𝑦 0 cos
4𝐼𝑦𝑦𝐾2−𝐾1

2

2𝐼𝑦𝑦
𝑡 +

ሷ𝜃𝑦 0 +
𝐾1 ሶ𝜃𝑦 0

2𝐼𝑦𝑦

4𝐼𝑦𝑦𝐾2−𝐾1
2

2𝐼𝑦𝑦

sin
4𝐼𝑦𝑦𝐾2−𝐾1

2

2𝐼𝑦𝑦
𝑡 .

ሶ𝜃𝑦 t = 𝑒
−𝐾1𝑡

2𝐼𝑦𝑦 ሶ𝜃𝑦 0 cos
4𝐼𝑦𝑦𝐾2−𝐾1

2

2𝐼𝑦𝑦
𝑡 +

𝐾1 ሶ𝜃𝑦 0 +2𝐼𝑦𝑦 ሷ𝜃𝑦 0

𝐾1
2−4𝐼𝑦𝑦𝐾2

sin
4𝐼𝑦𝑦𝐾2−𝐾1

2

2𝐼𝑦𝑦
𝑡 .

note that our assumption about the imaginary roots is correct only if 𝐾1
2

− 4𝐼𝑦𝑦𝐾2 < 0.

25

3) Suppose the denominator has a double root. Notice that in such a

situation the equation 𝐾1
2 = 4𝐼𝑦𝑦𝐾2 holds. so we can write

ሶΘ 𝑠 =

ሶ𝜃𝑦 0 𝑠 + ሷ𝜃𝑦 0 +
𝐾1 ሶ𝜃𝑦 0
𝐼𝑦𝑦

s2 +
𝐾1
𝐼𝑦𝑦

𝑠 +
𝐾2
𝐼𝑦𝑦

=
𝐴

𝑠 +
𝐾1
2𝐼𝑦𝑦

+
𝐵

𝑠 +
𝐾1
2𝐼𝑦𝑦

2

⟹ 𝐴 𝑠 +
𝐾1
2𝐼𝑦𝑦

+ 𝐵 = ሶ𝜃𝑦 0 𝑠 + ሷ𝜃𝑦 0 +
𝐾1 ሶ𝜃𝑦 0

𝐼𝑦𝑦

⟹

𝐴 = ሶ𝜃𝑦 0

𝐵 =
𝐾1 ሶ𝜃𝑦 0 + 2𝐼𝑦𝑦 ሷ𝜃𝑦 0

2𝐼𝑦𝑦

⟹ ሶ𝜃𝑦 t = 𝑒

−𝐾1𝑡

2𝐼𝑦𝑦 ሶ𝜃𝑦 0 +
𝐾1 ሶ𝜃𝑦 0 + 2𝐼𝑦𝑦 ሷ𝜃𝑦 0

2𝐼𝑦𝑦
t

26

𝐾1
2 − 4𝐼𝑦𝑦𝐾2>0

⟹ ሶ𝜃𝑦 t =
1

2
ሶ𝜃𝑦 0 +

𝐾1 ሶ𝜃𝑦 0 + 2𝐼𝑦𝑦 ሷ𝜃𝑦 0

𝐾1
2 − 4𝐼𝑦𝑦𝐾2

𝑒

−𝐾1+ 𝐾1
2−4𝐼𝑦𝑦𝐾2

2𝐼𝑦𝑦
𝑡

+
1

2
ሶ𝜃𝑦 0 −

𝐾1 ሶ𝜃𝑦 0 + 2𝐼𝑦𝑦 ሷ𝜃𝑦 0

𝐾1
2 − 4𝐼𝑦𝑦𝐾2

𝑒

−𝐾1− 𝐾1
2−4𝐼𝑦𝑦𝐾2

2𝐼𝑦𝑦
𝑡

∗∗∗
𝐾1
2 − 4𝐼𝑦𝑦𝐾2 < 0⟹

ሶ𝜃𝑦 t = 𝑒
−𝐾1𝑡
2𝐼𝑦𝑦 ሶ𝜃𝑦 0 cos

4𝐼𝑦𝑦𝐾2 − 𝐾1
2

2𝐼𝑦𝑦
𝑡 +

𝐾1 ሶ𝜃𝑦 0 + 2𝐼𝑦𝑦 ሷ𝜃𝑦 0

𝐾1
2 − 4𝐼𝑦𝑦𝐾2

sin
4𝐼𝑦𝑦𝐾2 − 𝐾1

2

2𝐼𝑦𝑦
𝑡

∗∗∗
𝐾1
2 = 4𝐼𝑦𝑦𝐾2

⟹ ሶ𝜃𝑦 t = 𝑒
−𝐾1𝑡
2𝐼𝑦𝑦 ሶ𝜃𝑦 0 +

𝐾1 ሶ𝜃𝑦 0 + 2𝐼𝑦𝑦 ሷ𝜃𝑦 0

2𝐼𝑦𝑦
t

As an outline, we rewrite what we have calculated:

underdamped

critically
damped

overdamped

27

28

A DC motor produces a torque that is proportional to the current
through the windings of the motor. Neglecting friction, the net torque
on the motor, therefore, is this torque minus the torque applied by
whatever load is connected to the motor. Newton’s second law (the
rotational version) gives

𝑘𝑇 𝑖 𝑡 − 𝑥 𝑡 = 𝐼
𝑑𝜔

𝑑𝑡

Assuming the motor is initially at
rest, we can rewrite the equation:

𝜔 𝑡 =
𝑘𝑇
𝐼
න

0

𝑡

𝑖 𝜏 𝑑𝜏 −
1

𝐼
න

0

𝑡

𝑥 𝜏 𝑑𝜏

motor torque constant

torque applied by the load

kT
I

x

i
𝜔

29

In reality, the input to a DC motor is not a current, but is rather a
voltage. If we assume that the inductance of the motor windings is
negligible, then the relationship between voltage and current is given by

𝑣 𝑡 = 𝑅𝑖 𝑡 + 𝑘𝑏𝜔 t

where R is the resistance of the motor windings and kb is a constant
called the motor back electromagnetic force constant. The second term
appears because a rotating motor also functions as an electrical
generator, where the voltage generated is proportional to the angular
velocity.
So we can modify the previous equation:

𝑘𝑇
𝑅

(𝑣 𝑡 − 𝑘𝑏𝜔 t) − 𝑥 𝑡 = 𝐼
𝑑𝜔

𝑑𝑡

⟹ ሶ𝜔 +
𝑘𝑏𝑘𝑇
𝑅𝐼

𝜔 +
𝑅𝑥 𝑡 − 𝑘𝑇𝑣 𝑡

𝑅𝐼
= 0

30

Chapter 3

• Discrete dynamics

31

A discrete system operates in a sequence of discrete steps and is said to
have discrete dynamics. Some systems are inherently discrete.

Example) A system counting the number of cars entering and leaving a
parking garage, in order to display the number of cars occupying the
garage.

The corresponding
system that we had
in previous chapter

32

How to model the discrete systems?

Finite state machine
(automata)

However, it is
just for

showing the
states and

there may not
be a final

state.

A pure signal is either present or absent

33

Boolean predicate
For example:

: Transition is always enabled.
: Transition is enabled if p1 is present.

: Transition is enabled if p1 is absent.
: Transition is enabled if both p1 and p2 are present.
: Transition is enabled if either p1 or p2 is present.

: Transition is enabled if p1 is present and p2 is absent.

Suppose the setpoint is 20 degrees Celsius. If the
heater is on, then the thermostat allows the
temperature to rise past the setpoint to 22
degrees. If the heater is off, then it allows the
temperature to drop past the setpoint to 18

degrees. This strategy is called hysteresis.

34

Hysteresis avoids chattering, where the heater would turn on and off
rapidly when the temperature is close to the setpoint temperature.

FSM

Event triggered like garage counter, HVAC (heating,

ventilation, and air conditioning)

Time triggered timed automata like traffic light

Extended State machine
The notation for FSMs becomes awkward when the number of states
gets large. The garage counter example illustrates this point clearly.

35

When pedestrian is present, the machine transitions to yellow if it has been
in state green for at least 60 seconds. Otherwise, it transitions to pending,
where it stays for the remainder of the 60 second interval. This ensures that
once the light goes green, it stays green for at least 60 seconds.

:= means
assignment. In
order not to
be confused
with a
predicate.

36

Another example from out of the book

turnstile

37

Chapter 4

• Hybrid systems

38

We have learned so far

𝐹 = −𝑘𝑥 = 𝑚
𝑑2𝑥

𝑑𝑡2

Continuous systems Discrete systems

Now we want to
combine these systems.

Why?

39

In this section, we show that state
machines can be generalized to admit
continuous inputs and outputs and to
combine discrete and continuous
dynamics.

40

State Refinement

41

Recall the thermostat of Example 4.1, which uses hysteresis to prevent
chattering. An alternative implementation that would also prevent
chattering would use a single temperature threshold, but instead would
require that the heater remain on or off for at least a minimum amount
of time, regardless of the temperature. This design would not have the
hysteresis property, but may be useful nonetheless.

This action ensures that
when the thermostat

starts, it can immediately
transition to the heating
mode if the temperature
𝜏(t) is less than or equal

to 20 degrees.

s is a continuous-time
signal with dynamics

given by ሶ𝑠 (t) = 1
representing the clock

ensures that the heater
will always be on for at

least time Th.

specifies that once the
heater goes off, it will
remain off for at least
time Tc.

42

A timed automaton that
generates a pure output
event every T time units.

43

Consider the physical system depicted below. Two sticky round masses
are attached to springs. The springs are compressed or extended and
then released. The masses oscillate on a frictionless table. If they
collide, they stick together and oscillate together. After some time, the
stickiness decays, and masses pull apart again.

p1 , p2 : neutral position of two masses
respectively (when the springs are
neither extended nor compressed)

m1 m2

k1 k2

1) If the masses are separate:

𝐹 = 𝑘 𝑝 − 𝑦 = 𝑚
𝑑2𝑦

𝑑𝑡2

⇒ ሷ𝑦𝑖(𝑡) =
𝑘𝑖(𝑝𝑖 − 𝑦𝑖 𝑡)

𝑚𝑖

2) With the masses stuck together, they behave as a single object with mass m1 +m2.

𝑦(𝑡) = 𝑦1(𝑡) = 𝑦2(𝑡)

𝐹 = 𝑘1 𝑝1 − 𝑦 + 𝑘2 𝑝2 − 𝑦 = 𝑚
𝑑2𝑦

𝑑𝑡2

⇒ ሷ𝑦(𝑡) =
𝑘1𝑝1 + 𝑘2𝑝2 − (𝑘1 + 𝑘2)𝑦 𝑡

𝑚1 +𝑚2

44

Now, we must determine when the system changes it’s state. Then
we should find the velocity in each action, since in order to describe
the motion of system in each state, we need the position and velocity
at the time that the state changes.

45

The transition from apart to together has the guard 𝑦1(𝑡) = 𝑦2(𝑡)

When the masses stick together, based on the conservation of momentum
we have:

𝑚1 ሶ𝑦1 𝑡 + 𝑚2 ሶ𝑦2 𝑡 = (𝑚1 +𝑚2) ሶ𝑦(𝑡)

⟹ ሶ𝑦 𝑡 =
𝑚1 ሶ𝑦1 𝑡 + 𝑚2 ሶ𝑦2 𝑡

𝑚1 +𝑚2

The transition from together to apart has the more complicated guard:
𝑘1 − 𝑘2 𝑦 𝑡 + 𝑘2𝑝2 − 𝑘1𝑝1 > s

That is, the right-pulling force on the right mass exceeds the
right-pulling force on the left mass by more than the stickiness.

stickiness of
two masses

46

After determining all of the system features, we
can predict the system behavior by programming
or using a simulator. 47

48

The system outputs a
bump each time the
ball hits the ground,
and also outputs the
position of the ball.

This system is depicted as an event triggered system (y(t)=0). As an
exercise, think about converting it to a time triggered one. What makes
it problematic?

49

Control system

The plant, the physical process that is to be controlled

the environment in which the plant operates

the sensors that measure some variables of the

plant and the environment

the controller that

determines the mode transition
structure and selects the time-
based inputs to the plant. 1. supervisory control that

determines the mode transition
structure

It has two levels:

2. low-level control that
determines the time-based inputs to
the plant

Hybrid systems are ideal
for modeling such two-

level controllers.

50

Consider an
automated guided
vehicle (AGV). We
will design a
controller so that the
vehicle closely
follows the track.

We ignore the inertia of the vehicle, so we assume that we
can instantaneously change the velocity or angular speed.

ሶ𝑥 𝑡 = 𝑢 𝑡 cos 𝜃(𝑡)
ሶ𝑦 𝑡 = 𝑢 𝑡 sin 𝜃(𝑡)

ሶ𝜃 𝑡 = 𝜔(𝑡)

Now, we’ve designed
a low level control,

specifying what to do in
each decision.

52

53

54

Transitions are
added as

supervisory control

55

In this example:

1) The plant is described by differential equations ൞

ሶ𝑥 𝑡 = 𝑢 𝑡 cos 𝜃(𝑡)

ሶ𝑦 𝑡 = 𝑢 𝑡 sin 𝜃(𝑡)
ሶ𝜃 𝑡 = 𝜔(𝑡)

that govern

the evolution of the continuous state at time 𝑡, (𝑥(𝑡); 𝑦(𝑡); 𝜃(𝑡)), in terms of the
plant inputs 𝑢 and 𝜔.

2) The environment is the closed track.

56

3) The sensor is the photodiode array, measuring the position of the
AGV relative to the track (e(t)).

4)
i) The supervisory controller comprises the four modes and the
guards that determine when to switch between modes.

ii) The low-level controller specifies how the time-based inputs
to the plant, u and 𝜔, are selected in each mode.

57

Chapter 5

• Composition of State Machines

58

State machines provide a convenient way to model behaviors of
systems.

Automated tools can handle large state spaces, but humans have more
difficulty with any direct representation of a large state space. A time-
honored principle in engineering is that

This chapter gives a
number of ways to do this with state machines.

Composition
techniques

൞
concurrent composition ቊ

machines react simultaneously (synchronous)
machines react independently (asynchronous)

hierarchy

59

Synchrony has different meanings in different contexts. The meaning
used in this chapter underlies the .
❑ the outputs of components in a program are (conceptually)

simultaneous with their inputs ().
❑ components in a program execute (conceptually) simultaneously and

instantaneously.
concurrent composition

1) Side-by-Side Synchronous Composition:
The state machines being composed do not communicate.
The inputs and outputs of the two actors are disjoint.

60

Synchronous side-by-side composition is simple for several reasons.
❑ we know that the environment determines when a state machine

reacts. In synchronous side-by-side composition, the environment
need not be aware that is a composition of two state machines.
Such compositions are modular in the sense that the composition
itself becomes a component that can be further composed as if it
were itself an atomic component.

❑ if the two state machines A and B are deterministic, then the
synchronous side-by-side composition is also deterministic. We say
that a property is compositional if a property held by the
components is also a property of the composition. For synchronous
side-by-side composition, is a compositional property.

❑ a synchronous side-by-side composition of finite state machines is
itself an FSM.

61

Notice that (s1; s4)
and (s2; s3) are not

.

62

2) Side-by-Side Asynchronous Composition:
In an of state machines, the component
machines react independently. This statement is rather vague, and in
fact, it has several different interpretations. Each interpretation gives a
semantics to the composition. The key to each semantics is how to
define a reaction of the composition . Two possibilities are:

Semantics 1) A reaction of is a reaction of one of 𝐴 or 𝐵, where the
choice is nondeterministic. (interleaving semantics, i.e. 𝐴 or 𝐵 never
react simultaneously. Their reactions are interleaved in some order.)

Semantics 2) A reaction of is a reaction of 𝐴, 𝐵, or both 𝐴 and 𝐵,
where the choice is nondeterministic. A variant of this possibility might
allow neither to react.

63

under these semantics machines A and B may completely miss input
events. That is, an input to destined for machine A may be present in a
reaction where the nondeterministic choice results in B reacting rather
than A. If this is not desirable, then some control over scheduling or
synchronous composition becomes a better choice.

𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐𝑠 1

This machine is nondeterministic. Note
that if we had chosen semantics 2, then it

would also be able to move to (s2; s4).
red arrows show
nondeterminism

64

Shared Variables
An extended state machine has local variables that can be read and written as
part of taking a transition. Sometimes it is useful when composing state
machines to allow these variables to be shared among a group of machines. In
particular, such shared variables can be useful for modeling interrupts and
threads. Many complications arise, including the model
and the notion of .

65

Consider two servers that can receive requests from a network. Each request requires
an unknown amount of time to service, so the servers share a queue of requests. If
one server is busy, the other server can respond to a request, even if the request
arrives at the network interface of the first server.

shared variable pending:
number of pending job requests

When a request arrives at
the composite machine

, one of the two servers
is nondeterministically
chosen to react,
assuming asynchronous
composition under
semantics 1. If that server
is idle, then it proceeds
to serve the request. If
the server is serving
another request, then
one of two things can
happen:

66

it can coincidentally finish serving the request it is currently serving, issuing the output done,
and proceed to serve the new one, or it can increment the count of pending requests and
continue to serve the current request. The choice between these is nondeterministic, to model
the fact that the time it takes to service a request is unknown.

If reacts when there is
no request, then again
either server A or B will be
selected non-
deterministically to react.
If the server that reacts is
idle and there are one or
more pending requests,
then the server transitions
to serving and decrements
the variable pending. If
the server that reacts is
not idle, then one of three
things can happen.

67

It may continue serving the current request, in which case it simply transitions on the
self transition back to serving. Or it may finish serving the request, in which case it will
transition to idle if there are no pending requests, or transition back to serving and
decrement pending if there are pending requests.

Notice that because of
the interleaving
semantics, accesses to
the shared variable are
atomic operations

68

The choice of semantics 1 is reasonable in this case because the input
goes to both of the component machines, so regardless of which
component machine reacts, no input event will be missed. However, this
semantics would not work if the two machines had independent inputs,
because then requests could be missed. Semantics 2 can help prevent
that, but what strategy should be used by the environment to determine
which machine reacts? What if the two independent inputs both have
requests present at the same reaction of ? If we choose semantics 4 to
allow both machines to react simultaneously, then what is the meaning
when both machines update the shared variable? The updates are no
longer atomic, as they are with an interleaving semantics. Note further
that choosing asynchronous composition under semantics 1 allows
behaviors that do not make good use of idle machines. In particular,
suppose that machine A is serving, machine B is idle, and a request
arrives. If the nondeterministic choice results in machine A reacting,
then it will simply increment pending. Not until the nondeterministic
choice results in B reacting will the idle machine be put to use. In fact,

semantics 1 allows behaviors that never use one of the machines.

69

Cascade Composition (serial composition)
The output of A must be valid is an input for B.

For cascade composition, if we wish the composition to be
asynchronous, then we need to introduce some machinery for buffering
the data that is sent from A to B. We defer discussion of such
asynchronous composition to Chapter 6, where dataflow and process
network models of computation will provide such asynchronous
composition. In this chapter, we will only consider synchronous
composition for cascade systems.

70

(s1,s4) and
(s2, s3) are
not
reachable
states!

71

We want to
compose
these models

The output
𝑠𝑖𝑔𝑅 of the
traffic light can
provide the
input 𝑠𝑖𝑔𝑅 of
the pedestrian
light.

72
Note that unsafe states, such as (green, green), are not reachable states, and hence
are not shown.

73

General Composition
Side-by-side and cascade composition provide the basic building blocks
for building more complex compositions of machines.

Hierarchical State Machines

which machine should react first, 𝐵 or 𝐴2?
This conundrum will be resolved in the next
chapter when we explain the synchronous-
reactive model of computation.

≡

State refinements can be another FSM

74

≡

Consider the hierarchical FSM depicted below is in state 𝐶. A subtle
question is what happens if both guards 𝑔1 and 𝑔4 evaluate to true.
Such subtle questions help account for the proliferation of different
variants of Statecharts.
We choose a particular semantics that has attractive modularity
properties. In this semantics, a reaction of a hierarchical FSM is defined
in a depth-first fashion. The deepest refinement of the current state
reacts first, then its container state machine, then its container, etc.
this means that if the machine is in state B, then the refinement
machine reacts first.

75

The transition from A to B is called a
reset transition because the destination
refinement is reset to its initial state,
regardless of where it had previously
been. A reset transition is indicated in
our notation with a hollow arrowhead
at the destination end of a transition.

the transition from A to B is a history
transition, an alternative to a reset
transition. In our notation, a solid
arrowhead denotes a history transition.
It may also be marked with an “H” for
emphasis. When a history transition is
taken, the destination refinement
resumes in whatever state it was last in
(or its initial state on the first entry).

76

